Appendix H ## Rat and Mouse Oral LD_{50} Database | H-1 | Rat and Mouse Oral LD ₅₀ Database | H-3 | |-----|--|--------| | H-2 | Evaluation of the Candidate Reference Data | . H-47 | 17 Mar 2006 [This Page Intentionally Left Blank] ## Appendix H-1 Rat and Mouse Oral LD₅₀ Database 17 Mar 2006 [This Page Intentionally Left Blank] | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|---|---|--|---|--------------------|--|---|--|--|---|---| | 1,1,1-Trichloroethane | 9600 | 9600 | 7384 - 12480 | NA | rats | NA | oral | NA | NA | reference in Russian | NA | RTECS REFERENCE CODEN: GNAMAP Bibliographic Data:
Gigiena Naselennykh Mest. Hygiene in Populated Places. (Izdatel'stvo
Zdorov'ya, Kev. USSR) V.7-1967- CODEN Reference: 29.45,1990. —
Paligov VI, Khananaev LI, Goinatskii MG, Gavrilyuk VM. 1990.
Hygienic substantiation of content of methylchloroform in water bodies.
Girsiena Naselennykh Mest 29.45-49. | | 1,1,1-Trichloroethane | 9600 | 10300 | 8270 - 12800
(95% CL) | Thompson method of moving averages | Wistar white rats;
175 - 250 g | female | oral; stomach
tube | single dose; undiluted; no
more than 7 cc administered | all surviving rats observed up to 2 weeks; 35 rats used | NA | NA | Torkelson TR, Oyen F, McCollister DD, Rowe VK. 1958. Toxicity of
1,1,1-irichloroethane as determined on laboratory animals and human
subjects. Am Ind Hyg Assoc J 19:353-362.
The Dow Chemical Company, Midland, MI | | 1,1,1-Trichloroethane | 9600 | 12300 | 11000 - 13700
(95% CL) | Thompson method of moving averages | Wistar white rats;
175 - 250 g | male | oral; stomach
tube | single dose; undiluted; no
more than 7 cc administered | all surviving rats observed up to 2 weeks; 35 rats used | this compound is an inhibited form | NA | Torkelson TR, Oyen F, McCollister DD, Rowe VK. 1958. Toxicity of
1,1,1-ircihloroethane as determined on laboratory animals and human
subjects. Am Ind Hyg Assoc J 19:353-362.
The Dow Chemical Company. Midland. MI | | 1,1,1-Trichloroethane | 9600 | 12600 | 926 - 17100
(CL) | Litchfield and
Wilcoxon | Holtzman, Sprague-
Dawley albino rats;
215-330 g; adult | male | oral; gastric
intubation | single dose; undiluted; 464,
1000, 2150, 4660, 10000,
21500 mg/kg doses | observations recorded at 1, 4, 24 hours, daily
thereafter for 7 days; 5 dead at highest dose;
depression, ataxia, labored respiration,
salivation, ptosis, excessive urination,
diarrhea | 3-4 hour fasting period; stabilized 1,1,1-trichloroethane; inhibited formulation | NA | from EPA TSCATS database; Acute Oral Administration-Rats Acute
Dermal Application-Rabbits Acute Eye Irritation-Rabbits Primary Skin
Irritation-Rabbits Subacute (Four-Weels Inhalation; 1969. EPA Doc. No.
878210366, Fiche No. OTS0205891; Ethyl Corp. | | 1,1,1-Trichloroethane | 9600 | 12627 | 5356 - 29765
(CL) | Litchfield and
Wilcoxon | Holtzman, Sprague-
Dawley albino rats;
215-330 g; adult | male | oral; gastric
intubation | single dose; undiluted; 464,
1000, 2150, 4660, 10000,
21500 mg/kg doses | observations recorded at 1, 4, 24 hours, daily
thereafter for 7 days; 5 dead at highest dose;
depression, ataxia, labored respiration,
salivation, ptosis | 3-4 hour fasting period; stabilized 1,1,1-trichloroethane; inhibited formulation | NA | from EPA TSCATS database; Acute Oral Administration-Rats Acute
Dermal Application-Rabbits Acute Eye Irritation-Rabbits Primary Skin
Irritation-Rabbits Subacute (Four-Week) Inhalation; 1969. EPA Doc. No.
878210366. Fiche No. OTSO205891; Ethyl Corp. | | 1,1,1-Trichloroethane | 9600 | 16000 | no CL ("all-or-
none" response) | Litchfield and
Wilcoxon | Holtzman, Sprague-
Dawley albino rats;
215-330 g; adult | male | oral; gastric
intubation | single dose; undiluted; 464,
1000, 2150, 4660, 10000,
21500 mg/kg doses | observations recorded at 1, 4, 24 hours, daily
thereafter for 7 days; 4 dead at highest dose;
depression, ataxia, labored respiration,
excessive urination, diarrhea, ruffled fur,
salivation, piloerection | 3-4 hour fasting period; unstabilized 1,1,1-trichloroethane | NA | from EPA TSCATS database; Acute Oral Administration-Rats Acute
Dermal Application-Rabbits Acute Eye Irritation-Rabbits Primary Skin
Irritation-Rabbits Subacute (Four-Week) Inhalation; 1969. EPA Doc. No.
878210366, Fiche No. OTS0205891; Ethyl Corp. | | 2-Propanol | 5045 | 4074
(5.19 mL/kg; sp.
density = 0.78505;
convert LD50 to
mg/kg)
4396 | 3015 - 5503 | moving average
method | Wistar rats; 90-120
g; 3-4 weeks old | male | oral; stomach
intubation | doses differ by a factor of 2 in a geometric series | 14 day observation; dose, number of dead/total: 16 mL/kg 3/3; 8 mL/kg 5/5; 4 mL/kg 1/5 | non-fasted; tested in 1975; 13 rats used | NA | from EPA TSCATS database; Range Finding Toxicity Studies With
Isopropanol Recovery Column, Side Stream Decanter Make With Cover
Letter Dated 02987; EPA Document No. 86870000097 Fiche No.
OTS0513282; Union Carbide Corp.; Carnegi Mellon 1976 | | 2-Propanol | 5045 | 4396
(5.6 mL/kg; sp.
density = 0.78505;
convert LD50 to | 3297 - 5809
(95% CL; 4.2 - 7.4
mL/kg; sp. density
= 0.78505; convert
LD50 to mg/kg) | Wilcoxon method and | Sprague-Dawley
rats; 16-50 g; 14
days | male and
female | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; 6-12 rats of both sexes
used for studies; solvent used in
undiluted form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, II. | | 2-Propanol | 5045 | 4500 | 3500 - 5800
(95% CL) | UDP | Sprague-Dawley rats; ~ 7 weeks | female | oral gavage | undiluted dose (g/kg) 3.5, 4.5, 5.8, 7.5 | clinical observations: soft stools, diarrhea, decreased limb tone, hypoactivity, hypothermia, lacrimation, pinna and pain reflex absent, red-stained nose, mouth, and eyes, dyspnea, brown-stained urogenital or anal region, bradypnea and piloerection, ataxia; dose (g/kg), rats dead: 3.5-0/2; 4.5-2/4; 5.8-2/2; 7.5-1/1 | 18-20 hour fasted rats; 1-4 rats per dose; GLP study | NA | from EPA TSCATS database; Acute Oral Toxicity (Up/Down Method)
Report with Cover Letter Dated 020987; 1983. EPA Document No.
86870000160, Fiche No. OTS0513345; Hazelton Labs; Hazelton 1983 | | 2-Propanol | 5045 | 4710
(6.0 mL/kg; sp.
density = 0.78505;
convert LD50 to
mg/kg) | 4082 - 5495
(95% CL; 5.2 - 7.0
mL/kg; sp. density
= 0.78505; convert
LD50 to mg/kg) | Wilcoxon method and | Sprague-Dawley
rats; 80-160 g;
young adult (4-6
weeks according to
Taconic Farms) | male | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; groups of 6 rats used for
the studies; solvent used in undiluted
form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, II. | | 2-Propanol | 5045 | 5045 | 4650 - 5400 | NA | rats | female? | oral | NA | NA | reference in Russian | NA | RTECS REFERENCE CODEN: GISAAA Bibliographic Data: Gigiena i Sanitariya. For English translation, see HYSAAI'. (I/O Mechaduarodnaya Kniga, 113095 Moscow, USSR) V.1-1936-CODEN Reference: 43(1),8,1978.— Antonova VI, Salmina ZH. 1978. The maximal permissible concentration of isopropyl alcohol in water bodies with due regards for its action on the gonads and the progeny. Gigiena i Sanitariya 43(1):9-11. | | 2-Propanol | 5045 | 5087
(6.48 mL/kg; sp.
density = 0.78505;
convert LD50 to
mg/kg) | 3768 - 6877 | moving average
method | Wistar rats; 90-120
g; 3-4 weeks old | male | oral; stomach
intubation | doses differ by a factor of 2 in a geometric series | 14 day observation;dose, number of dead/total: 10mL/kg - 5/5; 5 mL/kg - 1/5 | non-fasted; tested in 1971; 10 rats used | NA | from EPA TSCATS database; Isopropanol, Anhydrous Range
Finding
Toxicity Studies with Cover Letter Dated 020987, (1971), EPA Document
No. 86870000102, Fiche No. OTS0513287;
Carnegie-Mellon Inst. of Res. 1971 | | | LD50 ²
mg/kg | LD50 ³
mg/kg | LD50 ⁴ | LD50
CALCULATION | ANIMAL | | ROUTE/ | | | | CHEMICAL | | |-----------------------|----------------------------|---|---|--|---|--|------------------------------------|---|---|---|---|--| | CHEMICAL ¹ | oral
rat
RTECS | oral
rat
Primary Reference | mg/kg
(range)
Primary Reference | METHOD ⁵ Primary Reference | INFORMATION
(stock, weight, age) | GENDER | METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | SOURCE | PRIMARY REFERENCE | | 2-Propanol | 5045 | 5300 | 4100 - 7000
(95% CL) | UDP | Sprague-Dawley
rats; ~ 7 weeks | male | oral gavage | undiluted dose (g/kg) 4.5, 5.8, 7.5, 9.8 | elinical observations: soft stools, diarrhea, ataxia, decreased limb tone, hypoactivity, hypothermia, lacrimation, pinna and pain reflex absent, red-stained nose, mouth and eyes, brown-stained urogenital or anal region, dyspnea, bradypnea and piloerection; dose (g/kg), rats dead: 4.5 - 0/2; 5.8 - 2/3; 7.5 - 2/3; 9.8 - 1/3.2 - 1/3.2 - | 18-20 hour fasted rats; 1-3 rats per dose; GLP study | NA | from EPATSCATS database; Acute Oral Toxicity (Up/Down Method)
Report with Cover Letter Dated 020987, (1983), EPA Document No.
86870000160, Fiche No. OTS0513345; Hazelton Labs: Hazelton 1983 | | 2-Propanol | 5045 | 5338
(6.8 mL/kg;
sp.density is
0.78505; convert
LD50 to mg/kg) | 4161 - 6908
(95% CL; 5.3 - 8.8
mL/kg; sp. density
= 0.78505; convert
LD50 to mg/kg) | Wilcoxon method and | Sprague-Dawley
rats; 300-470 g;
older adult (9-18
weeks according to
Taconic Farms) | male | oral | solvent used in undiluted form | animals observed for a week after medication | form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL | | 2-Propanol | 5045 | 5840 | NA | based on assumption
that probit mortality vs
log dose has same
slope as similar
chemical | Sherman rats; 90 -
120 g; 4-5 weeks | male | | in aqueous solution; doses (in g/kg) differ by 1 log to bracket LD50, then refine LD50 with doses in a series of antilog 1.1, 1.3, 1.5, etc | LD50 based on mortalities during a 14 day period | 6 rats/dose at doses that differ by 1 log
to bracket LD50 (given 1 week apart);
then refined LD50 with 10 rats/dose in a
dose series of antilog 1.1, 1.3, 1.5, etc.;
assumed to use materials/methods of
Smyth & Carpenter (1944) except for
reported changes | reagent grade | Smyth HF Jr, Carpenter CP. 1948. Further experience with the range finding test in the industrial toxicology laboratory. J Ind Hyg Toxicol 30: 63-68. (LD50 value). Smyth HF Jr, Carpenter CP. 1944. The place of the range-finding test in the industrial toxicology laborotory. J Ind Hyg Toxicol 26:269-273. (most materials/methods) | | 5-Aminosalicylic acid | 2800 | 2800 | 1781 - 3819
(95% CL) | Miller and Tainter
(1944) | CDR Sprague-
Dawley albino rats;
male 288-346 g; 9-
12 weeks old | male | | dose vol.; methylcellulose
vehicle | 14 day observation; initial checks at 1, 2, and 4 hours after administration; 2 daily thereafter | 15 rats used (five/dose level); fasted overnight; GLP | Monsanto
Company | from EPA TSCATS database; Acute Toxicity Study in Rats Administered 10 Materials (final report) with Cover Letter dated 062669, (1969), EPA Doc. No. 40-694/188, Fiche No. OTSO519234; Monsanto Co./Bio/dynamics | | 5-Aminosalicylic acid | 2800 | 3450 | 2513 - 4387
(95% CL) | Miller and Tainter
(1944) | CDR Sprague-
Dawley albino rats;
male 288-346 g;
female 225-267 g; 9-
12 weeks old | male and
female
(equal
numbers) | oral; intubation | dose vol.; methylcellulose
vehicle | 14 day observation; initial checks at 1, 2, and 4 hours after administration; 2 daily thereafter | 30 rats used (five/sex/dose level); fasted
overnight; GLP; used same animals as
2800 and 4200 mg/kg values from
Monsanto 1969 | Monsanto
Company | from EPA TSCATS database; Acute Toxicity Study in Rats Administered
10 Materials (final report) with Cover Letter dated 062669, (1969), EPA
Doc. No. 40-6942188, Fiche No. OTS0519234;
Monsanto Co./Bio/dynamics | | 5-Aminosalicylic acid | 2800 | 4200 | 2863 - 5537
(95% CL) | Miller and Tainter
(1944) | CDR Sprague-
Dawley albino rats;
female 225-267 g; 9-
12 weeks old | female | oral; intubation | single dose; 2500, 3500,
5000 mg/kg doses; conc.
250, 350, 500 mg/mL; 10 mL
dose vol.; methylcellulose
vehicle | 14 day observation; initial checks at 1, 2, and
4 hours after administration; 2 daily
thereafter; toxicologic signs: soft stool,
hyponea, hypoactivity; urinary and fecal
staining | 15 rats used (five/dose level); fasted overnight;
GLP | Monsanto
Company | from EPA TSCATS database; Acute Toxicity Study in Rats Administered 10 Materials (final report) with Cover Letter dated 062669, (1969), EPA Doc. No. 40-6942188, Fiche No. OTS0519234; Monsanto Co./Bio/dynamics | | Acetaminophen | 1944 | 1944 | NA | Litchfield and
Wilcoxon | Wistar rats; 130-150
g | male and
female | stomach tube | 5 mL/kg bw in 1%
carboxymethyl-cellulose | observed 3 weeks | fasted 18 hours before dosing | NA | RTECS REFERENCE Kammerer F-J, Schleyerbach R. 1987. U.S. Patent 4,636,513. Isoxazole derivatives and medicaments containing these compounds (January 13, 1987). | | Acetaminophen | 1944 | 2404 | +/- 95
(S.E.) | Miller and Tainter
(1944) | Charles River CD
and Sprague-
Dawley rat strains;
> 100 g; adult | NA | oral intubation | up to 50 mL/kg | rats observed for 7 days; observed up to 14 days when heavy metals or other compounds that produce latent death were investigated | fasted overnight | NA | Yeary RA, Benish RA, Finkelstein M. 1966. Acute Toxicity of Drugs in
Newborn Animals. Journal of Pediatrics 69(4):663-667. Dept. of
Veterinary Preventive Medicine, Ohio State University, Columbus, OH | | Acetonitrile | 2460 | 157
(0.2 mL/kg; sp.
density = 0.7857;
convert LD50 to
mg/kg
1320 | = 0.7857; convert
LD50 to mg/kg) | Wilcoxon method and | Sprague-Dawley
rats; 16-50 g; 14
days | male and
female | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; 6-12 rats of both sexes
used for studies; solvent used in
undiluted form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL | | Acetonitrile | 2460 | 1320
(1.68 mL/kg; sp.
density = 0.7839;
convert LD50 to
mg/kg) | 972 - 1799
(1.24 - 2.27 mL/kg;
sp. density =
0.7839; convert
LD50 to mg/kg) | NA | Carworth Farms
Wistar or Nelson
albino rats; 90-112g | male | oral gastric
intubation | undiluted cmpd; single dose | | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. <i>Mellon Institute, Ptttsburgh, PM</i> | | Acetonitrile | 2460 | 1453 | 1123 - 1879
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | male | oral gavage | single dose | 14 day observation; toxicity symptoms:
ptosis, posture, respiratory effects, lethargy,
ataxia, convulsions; time to onset of signs <
1 day; duration of signs 5 days; 5 rats dead
(average per test) | 3 dose levels (5 male each); 15 rats
used; OECD TG401 (1981) followed for
experimental procedures | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA,
Pelling D, Tomlinson NJ, Walker AP. 1990. Jul. The International
Validation Of A Fixed-Dose Procedure As An Alternative To The
Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | Acetonitrile | 2460 | 1623
(2.07 mL/kg; sp.
density = 0.7839;
convert LD50 to
mg/kg | 1050 - 2524
(1.34 - 3.22 mL/kg;
sp. density =
0.7839; convert
LD50 to mg/kg | NA | Carworth Farms
Wistar or Nelson
albino rats; 90-112g | male | oral gastric intubation | undiluted cmpd; single dose | NA | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. <i>Mellon Institute, Pittsburgh, P4</i> | | Acetonitrile | 2460 | 1730 | 1100 - 2720 | NA | Carworth Farms
Wistar or Nelson
albino rats; 90-112g | female | oral gastric
intubation | 0.1 in corn oil; single dose | NA | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. Mellon Institute, Pittsburgh, P4 | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|---|--|--|--|--------|--|---|---|--|---|---| | Acetonitrile | 2460 | > 2000 | NA | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | female | oral gavage | single dose | 14 day observation; toxicity symptoms:
Ptosis, posture, respiratory effects, lethargy,
ataxia, convulsions; time to onset of signs <
1day; duration of signs 5 days; 5 rats dead
(average per test) | 3 dose levels (5 female each); 15 rats
used; OECD TG401 (1981) followed for
experimental procedures | | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA, Pelling D, Tomlinson NJ, Walker AP. 1990. Jul. The International Validation Of A Fixed-Dose Procedure As An Alternative To The Classical LD50 Test Food And Chemical Toxicology 28: (7) 469-482. | | Acetonitrile | 2460 | 2230 | 1900 - 2620 | NA | Carworth Farms
Wistar or Nelson
albino rats; 30-54 g;
weanlings | female | oral gastric
intubation | 0.1 in 1% aqueous Tergitol 7;
single dose | NA | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. Mellon Institute, Pittsburgh, P4 | | Acetonitrile | 2460 | 2340 | 2030 - 2700 | NA | Carworth Farms
Wistar or Nelson
albino rats; 90-112g | female | oral gastric
intubation | 0.1 in 1% aqueous Tergitol 7;
single dose | NA | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. Mellon Institute, Pittsburgh, P4 | | Acetonitrile | 2460 | 2460 | 1600 - 2780 | NA | Carworth Farms
Wistar or Nelson
albino rats; 90-120g | male | oral gastric
intubation | 0.1 in water; single dose | NA | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. Mellon Institute, Pittsburgh, PA | | Acetonitrile | 2460 | 2460 | NA | NA | rat | NA | oral | NA | NA | Duplicate record. Assumed to be the same values from Pozzani et al. (1959), Mellon Institute and Union Carbide. | NA | RTECS REFERENCE CODEN: UCDS** Bibliographic Data: Union Carbide Data Sheet. (Union Carbide Corp., 39 Old Ridgebury Rd., Danbury, CT 06817) CODEN Reference: 3/18/1965. | | Acetonitrile | 2460 | 2830 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms
Wistar; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels=2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Acetonitrile | 2460 | 3064 (3.9
mL/kg; sp. density =
0.7857; convert
LD50 to mg/kg) | 2593 - 3614
(95% CL; 3.3 - 4.6
mL/kg; sp. density
= 0.7857; convert
LD50 to mg/kg) | Wilcoxon method and | Sprague-Dawley
rats; 80-160 g;
young adult | male | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; groups of 6 rats used for
the studies; solvent used in undiluted
form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL | | Acetonitrile | 2460 | 3360 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric
factor
between dosage levels=2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Acetonitrile | 2460 | 3457
(4.4 mL/kg; sp.
density = 0.7857;
convert LD50 to
mg/kg) | 2200 - 5343 (95%
CL; 2.8 - 6.8
mL/kg; sp. density
= 0.7857; convert
LD50 to mg/kg) | Litchfield and
Wilcoxon method and
probit analysis | Sprague-Dawley
rats; 300-470 g;
older adult | male | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; groups of 6 rats used for
the studies; solvent used in undiluted
form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL | | Acetonitrile | 2460 | 3504 (4.47
mL/kg; sp. density =
0.7839; convert
LD50 to mg/kg) | 2187 - 5613
(2.79 - 7.16 mL/kg;
sp. density is
0.7839; convert
LD50 to mg/kg) | NA | Carworth Farms
Wistar or Nelson
albino rats; 84-114 g | male | oral gastric
intubation | undiluted cmpd; single dose | NA | fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. Mellon Institute, Pittsburgh, PM | | Acetonitrile | 2460 | 3520 (4.49
mL/kg; sp. density =
0.7839; convert
LD50 to mg/kg) | 1419 - 8748
(1.81 - 11.16
mL/kg; sp. density
= 0.7839; convert
LD50 to mg/kg) | NA | Carworth Farms
Wistar or Nelson
albino rats; 90-120g | male | oral gastric
intubation | undiluted cmpd; single dose | NA | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. <i>Mellon Institute, Pittsburgh, PM</i> | | Acetonitrile | 2460 | 3570 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms
Wistar; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels=2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow
Chemical Company, Midland, MI | | Acetonitrile | 2460 | 3717 (4.49
mL/kg; sp. density =
0.7839; convert
LD50 to mg/kg) | 1921 - 6436
(2.45 - 8.21mL/kg;
sp. density =
0.7839; convert
LD50 to mg/kg) | NA | Carworth Farms
Wistar or Nelson
albino rats; 250 -
318 g; yearlings | female | oral gastric
intubation | undiluted cmpd; single dose | NA | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. Mellon Institute, Pittsburgh, PA | | Acetonitrile | 2460 | 3800 | NA | based on assumption
that probit mortality vs
log dose has same
slope as similar
chemical | Sherman rats; 90 -
120 g; 4-5 weeks | male | oral gastric
intubation | in aqueous solution; doses
(in g/kg) differ by 1 log to
bracket LD50, then refine
LD50 with doses in a series
of antilog 1.1, 1.3, 1.5, etc | LD50 based on mortalities during a 14 day period | 6 rats/dose at doses (in g/kg) that differ
by 1 log to bracket LD50 (given 1 week
apart); then refined LD50 with 10
rats/dose in a dose series of antilog 1.1,
1.3, 1.5, etc.; assumed to use
materials/methods of Smyth &
Carpenter (1944) except for reported
changes. Reference for RC | reagent grade | Smyth HF Jr, Carpenter CP. 1948. Further experience with the range finding test in the industrial toxicology laboratory. J Ind Hyg Toxicol 30:63-68. (RC and 1983;38 ATECS LD50 value) Smyth HF Jr, Carpenter CP. 1944. The place of the range-finding test in the industrial toxicology laboratory. J Ind Hyg Toxicol 26:269-273. (most materials/methods) | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|---|--|--------|--|--|---|--|--|---| | Acetonitrile | 2460 | 4050 | | Litchfield and
Wilcoxon (1948) | Sprague-Dawley
rats; 175-260 g | | oral | undiluted; 3220 - 4970
mg/kg doses | observatons recorded frequently on the day
of dosing, daily thereafter for 14 days;
tremors, clonic/tonic convulsions, weight
loss; clinical signs appeared within 3 hour
after dosing and progessed to death in 24-72
hour. | overnight fasted; groups of at least 5 rats
per dose | Aldrich | Freeman JJ, Hayes EP. 1985. Acetone potentiation of acute acetonitrile toxicity in rats. J Toxicol Environ Hlth 15:609-621. Rutgers University, Piscataway, NJ | | Acetonitrile | 2460 | 4240 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Acetonitrile | 2460 | 4490 | 2460 - 8210 | NA | Carworth Farms
Wistar or Nelson
albino rats; 240-425
g; yearlings | female | oral gastric
intubation | 0.1 in 1% aqueous Tergitol 7;
single dose | | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. Mellon Institute, Pittsburgh, P4 | | Acetonitrile | 2460 | 4850 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Acetonitrile | 2460 | 5244
(6.69 mL/kg; sp.
density = 0.7839;
convert LD50 to
mg/kg) | 3222 - 8545
(1.34 - 3.22 mL/kg;
sp. density =
0.7839; convert
LD50 to mg/kg) | NA | Carworth Farms
Wistar or Nelson
albino rats; 82-109
g | male | oral gastric
intubation | undiluted cmpd; single dose | NA | fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. Mellon Institute, Pittsburgh, PA | | Acetonitrile | 2460 | 5450 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Acetonitrile | 2460 | 5900 | 4580 - 7220 | NA | rats; 220 +/- 40 g | NA | oral;
intragastric | NA | NA | (source of information not provided) | | Izmerov NF, Sanotsky IV, Sidorov KK. 1982. Toxicometric Parameters of
Industrial Toxic Chemicals under Single Exposure. International
Register
of Potentially Toxic Chemicals (IRPTC). United Nations Environment
Programme (UNEP). Centre of International Projects, GKNT. Moscow,
Description. | | Acetonitrile | 2460 | 6498
(8.27 mL/kg; sp.
density = 0.7857;
convert LD50 to
mg/kg) | NA | Thompson method;
Weil tables | Carworth-Wistar
rats; 90 -120 g; 4 - 5
weeks | male | oral gastric intubation | in aqueous solution;
concentration intubated = 10
mg/mL; dosages arranged in
a logarithmic series differing
by a factor of 2 | | non-fasted; groups of 5 rats; single oral dose toxicity | | Smyth HF, Weil CS, West JS, Carpenter CP. 1970. An exploration of joint toxic action:II. Equitoxic versus equivolume mixtures. Toxicol Appl Pharmacol 17-398-503. (LD50 value) Smyth HF Jr., Carpenter CP, Weil CS, Pozzani, UC, Striegel, JA. And Nycum, JS. 1969. Range-finding toxicity data: List VII. Am Ind Hyg Assoc J 30-470-476. Carnegie-Mellon University. Pittsburgh. PA Smyth HF Jr., Carpenter CP, Weil CS, Pozzani, UC, and Striegel, JA. 1962. Range-finding toxicity data: List VI. Am Ind Hyg Assoc J 23-95-107. Mellon Institute of Industrial Research, Pittsburg. PA (experimental | | Acetonitrile | 2460 | 6500 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms
Wistar; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | narameters). Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative Evaluation of Single Oral Test. Toxicology and Applied Pharmacology 11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical Company, Mildland, MI | | Acetonitrile | 2460 | 6687
(8.53 mL/kg; sp.
density = 0.7839;
convert LD50 to
mg/kg) | 4797 - 9328
(6.12 - 11.9 mL/kg;
sp. density =
0.7839; convert
LD50 to mg/kg) | NA | Carworth Farms
Wistar or Nelson
albino rats; 90-114 g | female | oral gastric
intubation | undiluted cmpd; single dose | NA | non-fasted | Union
Carbide
Chemicals
Company | Pozzani UC, Carpenter CP, Palm PE, Weil CS, Nair JH. 1959. An investigation of the mammalian toxicity of acetonitrile. J Occup Med 1: 634-642. Mellon Institute, Pittsburgh, PM | | Acetonitrile | 2460 | 8120 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Acetylsalicylic acid | 200 | 200 | NA RTECS reference for 200 mg/kg (from
Deichman 1969) is a typo; this is a
secondary reference which cites
Caldwell and Boyd 1966; the value
should be 920 mg/kg. | NA | RTECS REFERENCE CODEN: 34ZIAG Bibliographic Data: "Toxicology of Drugs and Chemicals," Deichmann, W.B., New York, Academic Press, Inc., 1969 CODEN Reference: -67,1969. | | Acetylsalicylic acid | 200 | 616 | +/- 46 (S.E.) | Miller and Tainter
(1944) | FDRL-strain rats;
100 days | female | oral | NA | observed for 7 days post-treatment | NA | NA | Weinberg MS, Goldhamer RE, Carson S. 1966. Acute oral toxicity of
various drugs in newborn rats after treatment of the dam during gestation.
Toxic Appl Pharmac 9:234-239.
Food and Drug Research Laboratories. Inc., Masneth, NY | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|----------------------------------|--|--|---|--|------------------------|---| | Acetylsalicylic acid | 200 | 920 | +/- 43 (S.E.) | Croxton (1953) and
Waugh (1952) | Wistar albino rats;
213 +/- 16 g; 3-5
months | female | oral; stomach
tube | single dose; suspension of
cmpd in 0.2% gum tragcanth
solution in distilled water; 15
mL/kg dose; dose (mg/kg),
rats per dose: 0-14; 750-10;
875-10; 1000-10; 1125-10;
1250-2; 1500-2; 2000-2 | within I hour of dosing rats were drowsy,
withdrawn, hearing and vision impared,
confused, tense, liquid stool, nasal bleeding,
convulsionsrespiratory failure,
cardiovascular shock | fasted overnight (16 hour); 60 rats used; 26/46 rats dead from compound | USP grade | Boyd EM. 1959. The acute oral toxicity of acetylsalicylic acid. Toxic Appl Pharmac 1: 229-239. Queen's University, Ontario, Canada | | Acetylsalicylic acid | 200 | 1360 | NA | Reed and Muench
(1938) | Wistar albino rats | male and
female
(75% male) | oral; stomach
tube | single dose; solution in 2% acaia in physiological saline; volume of dose is 10 mL/kg | observed for one week; more than 80% of fatalities occurred within 48 hour | 182 rats used; fasted for 18 hour | G.D. Searle
and Co. | Eagle E, Carlson AJ. 1950. Toxicity, antipyretic and analgesic studies on 39 compounds including aspirin, phenacetin and 27 derivatives of carbazole and tetrahydrocarbazole. J Pharm Exp Ther 99:450-457. University of Chicago, Chicago, II. | | Acetylsalicylic acid | 200 | 1430 | 1065 - 1921
(95% CL) | Litchfield and
Wilcoxon method
(1949) | HLA strain albino
rats; 95-180 g
(mean wt. 122 g) | male | oral intubation | 10-20 mL/kg in 10% gum
acacia suspension; 4 doses | toxic effects included neurological
abnormality; this LD50 at 168 hour (7days);
observed at 96 with same result; observed at
24 & 48 hour with higher LD50 | rats fasted 15-17 hours before dosing
and for 6 hours after intubation; 40 rats
used (10/dose) | NA | Boxill GC, Nash CB, Wheeler AG. 1958. Comparative pharmacological and toxicological evaluation of N-acetyl-p-aminophenol, salicylamide, and acetylsalicylic acid. J Am Pharm Assoc 47:479-487. | | Acetylsalicylic acid | 200 | 1430 | 1065 - 1921
(95% CL) | Litchfield and
Wilcoxon method
(1949) | HLA strain albino
rats; 95-180 g
(mean wt. 122 g) | male | oral intubation | 10-20 mL/kg in 10% gum
acacia suspension; 4 doses | toxic effects included neurological
abnormality; this LD50 at 96 hour (same as
158 hour); observed at 24 & 48 hour with
higher LD50 | rats fasted 15-17 hours before dosing
and for 6 hours after intubation; 40 rats
used (10/dose) | | Boxill GC, Nash CB, Wheeler AG. 1958. Comparative pharmacological and toxicological evaluation of N-acetyl-p-aminophenol, salicylamide, and acetylsalicylic acid. J Am Pharm Assoc 47:479-487. | | Acetylsalicylic acid | 200 | 1459 (value
converted from
mM/kg to mg/kg) | 1009 - 2108 (95%
CL) | Weil (1952) | Homozygous Gunn
rat (Gunn strain
bred from mutant
Wistar stock); 137-
230 g | male | oral; gastric
lavage | single dose; solution in 0.5 -
1.0% (w/v) aqueous methyl
cellulose; 10 mL/kg dose
vol.; low dose (mg/kg):
176.6, 281.1, 450.4, 720.7,
1153.1; high dose (mg/kg):
450.4, 720.7, 1153.1, 1844.9,
2951.2 | low dose experiment observed for 3 days;
high dose observed for 7 days; LD50
determined at 7 days; dose (mg/kg), rats
dead per dose: 176.6-0/6; 281.1-0/6; 450.4
0/12; 720.7-1/12; 1153.1-1/12; 1844.9-5/6;
2951.2-5/6 | fasted overnight (16 hour); 6 rats per dose; 60 rats used | NA | Axelsen RA. 1976. Analgesic-induced renal papillary necrosis in the Gunn rat: the comparative nephrotoxicity of aspirin and phenacetin. J Path 120:145-150. University of Queensland, Queensland, Australia | | Acetylsalicylic acid | 200 | 1500 | NA | determined graphically | y rats | NA | oral; stomach
tube | aqueous with gum ragacanth (cmpd at 5 - 10% concen) | rats dead within 48 hours considered for determination of LD50 | 15 rats used | NA | Hart ER. 1947. The toxicity and analgetic potency of saliccylamide and certain of its derivatives as compared with established analgetic-antipyretic drugs. J Pharmacol Exp Ther 89:205-209. Jefferson Medical College, Philadelphia, PA | | Acetylsalicylic acid | 200 | 1500 | NA | Litchfield and
Wilcoxon | Wistar rats; 130-150 | male and
female | stomach tube | 5 mL/kg bw in 1% carboxymethylcellulose | observed 3 weeks | Fasted 18 hour before dosing | NA | RTECS REFERENCE Kammerer F-J, Schleyerbach R. 1987. U.S. Patent 4,636,513. Isoxazole derivatives and medicaments containing these compounds (January 13, 1987). | | Acetylsalicylic acid |
200 | 1523 | NA | NA | Upjohn Sprague-
Dawley strain
albino rats; ~140 g;
young | male | oral | single dose; cmpd suspended
in 1% aqueous
carboxymethylcellulose; 13
dose groups from 400 - 2500
mg/kg | deaths occurred during the first day;
frequently animals observed in convulsions | fasted overnight (12+ hour); 5 rats per
dose; 65 rats used | NA | Gray JE, Jones PM, Feeenstra ES. 1960. Comparative effect of acetylsalicylic acid and acetylsalicylic acid and acetylsalicylic acid and aphydride on the non-glandular portion of the stomach. Toxic Appl Pharmac 2:514-522.
The Upjohn Company, Kalamazoo, MI | | Acetylsalicylic acid | 200 | 1528 | +/- 156
(S.E.) | Miller and Tainter
(1944) | Charles River CD
and Sprague-
Dawley rat strains;
> 100 g | NA | oral intubation | dose up to 50 mL/kg | rats observed for 7 days; observed up to 14 days when heavy metals or other compounds that produce latent death were investigated | fasted overnight | NA | Yeary RA, Benish RA, Finkelstein M. 1966. Acute Toxicity of Drugs in
Newborn Animals. Journal of Pediatrics. 69 (4):663-667.
Dept. of Veterinary Preventive Medicine, Ohio State University,
Columbus, OH | | Acetylsalicylic acid | 200 | 1600 | 1194 - 2144
(95% CL) | Litchfield and
Wilcoxon method
(1949) | HLA strain albino
rats; 95-180 g
(mean wt. 122 g) | male | oral intubation | 10-20 mL/kg in 10% gum
acacia suspension; 4 doses | toxic effects included neurological
abnormality; this LD50 at 24 hour (same as
48 hour); observed at 96 & 168 hour with
lower LD50 | rats fasted 15-17 hours before dosing
and for 6 hours after intubation; 40 rats
used (10/dose) | NA | Boxill GC, Nash CB, Wheeler AG. 1958. Comparative pharmacological and toxicological evaluation of N-acetyl-p-aminophenol, salicylamide, and acetylsalicylic acid. J Am Pharm Assoc 47:479-487. | | Acetylsalicylic acid | 200 | 1600 | 1194 - 2144
(95% CL) | Litchfield and
Wilcoxon method
(1949) | HLA strain albino
rats; 95-180 g
(mean wt. 122 g) | male | oral intubation | 10-20 mL/kg in 10% gum
acacia suspension; 4 doses | toxic effects included neurological
abnormality; this LD50 at 48 hour (same as
24 hour); observed at 96 & 168 hour with
lower LD50 | rats fasted 15-16 hours before dosing
and for 6 hours after intubation; 10 rats
used | NA | Boxill GC, Nash CB, Wheeler AG. 1958. Comparative pharmacological and toxicological evaluation of N-acetyl-p-aminophenol, salicylamide, and acetylsalicylic acid. J Am Pharm Assoc 47:479-487. | | Acetylsalicylic acid | 200 | 1761 | +/- 162
(S.E.) | Miller and Tainter
(1944) | FDRL-strain rats;
100 days | male | oral | NA | observed for 7 days post-treatment | NA | NA | Weinberg MS, Goldhamer RE, Carson S. 1966. Acute oral toxicity of
various drugs in newborn rats after treatment of the dam during gestation.
Toxic Appl Pharmac 9:234-239.
Food and Drug Research Laboratories, Inc., Maspeth, NY | | Acetylsalicylic acid | 200 | 1880 | 1528 - 2312
(95% CL; slope =
1.27) | Litchfield and
Wilcoxon method
(1949) | Wistar SPF rats;
150-200 g | female | oral | cmpd suspended in a
solution of 10% gum arabic
in distilled water | observed for 7 days post-treatment | 10 animals per dose | NA | Zapatero J, Sanfeliu C, Bruseghini L. 1981. Toxicological studies of
Plafibride Part 1: Acute toxicity and its determination after several
administrations of plafibride. Arsneim Forsch 31:1816-1819.
Chemical Pharmaceutical Research Centre, Barcelona, Spain | | Acetylsalicylic acid | 200 | 1960 | 1441 - 2666
(95% CL; slope =
1.64) | Litchfield and
Wilcoxon method
(1949) | Wistar SPF rats;
150-200 g; | male | oral | cmpd suspended in a
solution of 10% gum arabic
in distilled water | observed for 7 days | 10 animals per dose | NA | Zapatero J, Sanfeliu C, Bruseghini L. 1981. Toxicological studies of
Plafibride Part 1: Acute toxicity and its determination after several
administrations of plafibride. Arsneim Forsch 31:1816-1819.
Chemical Pharmaceutical Research Centre, Barcelona, Spain | | Acetylsalicylic acid | 200 | 1992 | 1692 - 2345
(95% CL; slope =
1.45) | Litchfield and
Wilcoxon method
(1949) | Wistar SPF rats;
150-200 g; | male and
female | oral | cmpd suspended in a
solution of 10% gum arabic
in distilled water | observed for 7 days post-treatment | 10 animals per dose | NA | Zapatero J, Sanfeliu C, Bruseghini L. 1981. Toxicological studies of
Plafibride Part 1: Acute toxicity and its determination after several
administrations of plafibride. Arsneim Forsch 31:1816-1819.
Chemical Pharmaceutical Research Centre, Barcelona, Spain | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|--|--------------------|--|---|--|---|--------------------------------|---| | Acetylsalicylic acid | 200 | > 2000 | | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
SPF rats (Charles
River, France); 100-
110 g | male | oral | suspended in 0.25%
carboxymethylcellulose with
0.2% polysorbate 80; doses
in geometrical progression | observed for 7 days post-treatment; rats
presented no signs | 10 animals per dose; fasted 6 h prior to dosing | NA | Glomot R, Chevalier B, Vannier B. 1976. Toxicological studies on floctafenine. Toxicol Appl Pharmac 36:173-185. | | Acetylsalicylic acid | 200 | > 2000 | | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
SPF rats (Charles
River, France); 100-
110 g | female | oral | suspended in 0.25%
carboxymethylcellulose with
0.2% polysorbate 80; doses
in geometrical progression | observed for 7 days post-treatment; rats
presented no signs | 10 animals per dose; fasted 6 h prior to dosing | NA | Glomot R, Chevalier B, Vannier B. 1976. Toxicological studies on
floctafenine. Toxicol Appl Pharmac 36:173-185. | | Acetylsalicylic acid | 200 | 2840 | 2075 - 3890
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
CD strain albino
rats | male | oral; gavage | single dose; 5 mL/kg dose;
min. of 3 dose levels; cmpd
suspended in solution of 1%
gum acacia vehicle | observed for 7 days post-treatment; LD50
based on number of deaths at 7 days
observed for 14 days; deaths delayed until | 20 animals per dose level; 60 animals used; not fasted | Aldrich
Chemical
Company | Sofia RD. 1977. Alteration of hepatic microsomal enzyme systems and the lethal action of non-steroidal anti-arthritic drugs in acute and chronic models of inflammation. Agents and Actions 7: 289-297. Wallace Laboratories, Cranbury, NJ | | Aminopterin | no rat oral
data from
RTECS | 7 | NA | Maximum likelihood
estimation using log
probit model (BMDS
by US EPA) | Wistar albino rats;
100-200 g | male and
female | oral | used measured samples
neutralized before drying or
added 2 molar eq NaHCO3
to weighed amounts of free
acid; in 09% NaCl at 1
mL/100 g bw | onserved to 14 days, ceatus ucrayed until
3rd day; moderate weight loss by 1st day;
intoxicated animals lost 20% by 3rd day;
severe, watery diarrhea after 48 hour;
yellowish brown feces, terminally, grossly
stained with blood; deaths/dose: 40 mg/kg-
5/6 (3 at 3-4 days, 2 at 5-7 days, 1 at 8-14
days), 10 mg/kg-4/6 (3 at 3-4 days, 1 at 5-7
days); 5 mg/kg-2/6 (1 at 3-4 days, 1 at 5-14
days), 2 mg/kg-2/6 (1 at 3-4 days, 1 at 5-12
days), 5 mg/kg-2/6 (2 at 3-4 days), 1 at 5-7 | LD50 calculated by NICEATM; 36 rats used | | Philips FS, Thiersch JB. 1949. Studies of the actions of 4-amino-
pteroylglutamic acid in rats and mice. J Pharmacol Exp Ther 95:303-311. | | Amitriptyline | 320 | 320 | 286 - 359 | Litchfield and
Wilcoxon method
(1949) | rats | NA | oral | NA | lethality counted after 7 days | 40-50 rats used; reference in German | | RIECS REFERENCE-GERMAN CODEN: ARZNAD Bibliographic
Data: Arzneimittel-Forschung. Drug Research. (Editio Cantor Verlag,
Postfach 1253, W-7960 Aulendorf, Fed. Rep. Ger.) V.1- 1951- CODEN
Reference: 15.863.1965 | | Amitriptyline | 320 | 380 | 300 - 486 (95%
CL) | Litchfield and
Wilcoxon method
(1949) |
Wistar strain rats;
200 -300 g | male | oral | NA | 72 hour observations | 8 rats per group used; hydrochloride salt | NA | Tobe A, Yoshida Y, Ikoma H, Tonomura S, Kikumoto R. 1981. Pharmacological evaluation of 2-(4-methylaminobutoxy)diphenylmethane hydrochloride (MCI-2016), a new psychotropic drug with antidepressant activity. Azraeimittelforschung 31(8):1278-85. | | Arsenic III trioxide | 14.6 | 13 | NA | NA | rats | | oral; stomach
tube | NA | violent gastroenteritis, diarrhea, rice water stools | information from the laboratories of
Division of Pharmacology, U.S. FDA.;
fasted animals | NA | Lehman AJ. 1951. Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides, Quarterly Bulletine (Association of Food and Drug Officials of the United States). Vol.15:122-133. U.S. FDM | | Arsenic III trioxide | 14.6 | 14.6 | NA | NA | rats | male | oral | NA | no clinical picture given | reference is in Russian; not translated | NA | RTECS REFERENCE CODEN: GISAAA Bibliographic Data: Gigiena
i Sanitariya. For English translation, see HYSAAV. (V/O
Mechdunarodnaya Kniga, 113095 Moscow, USSR) V.1-1936-CODEN
Reference: 52(1),21,1987 | | Arsenic III trioxide | 14.6 | 19.9
(15.1 mg As/kg) | +/- 2.4
(reported as +/- 1.8
mg As/kg) | de Beer (1945) | Sprague-Dawley
Albino rats; 125 -
200 g | male | oral; intra-
esophageally | pure arsenic trioxide
dissolved in distilled water;
0.03 mL per g of bw; max
volume 8 mL; dose range 10
50 mg As/kg | observed over 96 hours for LD50;
experiment lasted 2 weeks; no significance
between male or female; 95 dead at 24 hour,
No of deaths/dose at 96 hour (male): 10 mg
As/kg - 9/30; 20 mg As/kg - 20/30; 30 mg
As/kg - 27/30; 40 mg As/kg - 28/30; 50 mg
As/kg - 30/30 | rats fasted 24 hour before dosing; 5 groups of 30 rats each (150 total); male and female rats tested; results and information given for male | 99.999% pure | Harrison JWE, Packman EW, Abbott DD. 1958. Acute oral toxicity and chemical and physical properties of arsenic trioxides. AMA Arch ind Health, 17:118-123. LaWall and Harrison Research Laboratories | | Arsenic III trioxide | 14.6 | 32.6 | 28.4 - 36.7 (95%
CI) | Finney (1971). Probit
Analysis. | NA | male | intubated;
single dose | dissolved in distilled water;
administered by gavage in
volume of 2mL/kg | rats dosed with one of 5 or 6 doses of chemical; deaths recorded daily for 7 days | animals acclimated to environment for 2
weeks before testing; used only healthy
rats; all rats assigned to one of 5 to 6
groups of 8 to 10 rats each | Mallinekrodt | Pryor GT, Uyeno ET, et al. 1983. "Assessment of chemicals using a battery of neurobehavioral tests: a comparative study." Neurobehav Toxicol Teratol 5(1): 91-117. SRI International, Menlo Park, CA; NIEHS, Research Triangle Park, NC | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|---|---|--------------------|--|--|--|---|--|--| | Arsenic III trioxide | 14.6 | 81.5 | 70.5 - 94.3 | Bliss-Probit method | Sprague-Dawley
rats; 5 weeks | male | oral gavage | dissolved in saline; range (mg/kg) of doses 51.2, 66.5, 86.5, 112.5, 146.2 | rats observed at 6 hours after dosing and a once a day for 1 - 2 weeks; most rats found dead within 3 days; 27 of 50 rats died; toxic symptoms: vomiting and diarrhea; No of deaths/dose (mg As/kg) at 14 days: 51.2 mg - 0/10; 66.5 mg - 2/10; 86.5 mg - 6/10; 112.5 mg - 9/10: 146.2 mg - 10/10; 67.5 14/10: 14/10 | | | Kitagawa H, Saito H, Sugimoto T, Yanaura S, Kitagawa H, Hosokawa T, Sakamoto K. 1982. Effects of diiospropyl-1,3-dithiol-2-ylidene malonate (NKK-105) on acute toxicity of various drugs and heavy metals. J Toxicol Sci 7(2):123-34. Chiba University; Hoshi College of Pharmacy; Showa University Japan | | Arsenic III trioxide | 14.6 | 138 | +/- 13 (standard
error) | Litchfield and Fetig
(1941) | wild Norway rats
(trapped in
Baltimore, MD);
148-493 g (ave =
253 g), adult | male and
female | oral gavage | chemical suspended in 10%
acacia solution; received
appropriate doses in 1mL per
100 g bw | rats survived from 6 - 72 hours | 41 rats used (approx. equal number of
male and female), overnight fasting
before dosing; assays performed in
winter, repeated in summer; LD50s from
combined information; final LD50
higher than winter LD50; attributed to
not having enough rats in winter. | Merck U.S.P. | Dieke SH, Richter CP. 1946. Comparative assays of rodenticides on wild
Norway rats. I. Toxicity. Publ. Health Rep 61:672-679. Johns
Hopkins Hospital, Baltimore, MD | | Arsenic III trioxide | 14.6 | 140 | NA | statistical formula
based on mortality
rates | wild Norway rats | unknown | oral, stomach
tube; single
dose | a number of individual doses
of a cmpd, each dose at a
different conc level are given
to an equal number of test
animals | enteritis and neuritis | NA | NA | Peardon DL, Kilbourn E, et al. 1972. "New selective rodenticides." Soap
Cosmet Chem Spec 48(12).6. Rohm
and Haas Company, Philadelphia, PA | | Arsenic III trioxide | 14.6 | 191.8
(145.2 mg As/kg) | +/- 11.5
(reported as +/- 8.7
mg As/kg) | de Beer (1945) | Sprague-Dawley
Albino rats; 125-
200 g | male | oral | pure arsenic trioxide
incorporated into 3 g rat | observed over 96 hours for LD50;
experiment lasted 2 weeks; no significance
between male or female; 76 dead at 24 hour;
No of deaths/dose (mg As/kg) at 96 hour:
301 mg - 0/20; 91 mg - 2/20; 1281 mg -
6/20; 1809 mg -12/20; 2078 mg -18/20; 269
mg - 2/0/20: 338 mg - 2/0/20 | rats fasted 24 hour before dosing; 7
groups of 20 rats each (140 total); male
and female rats tested; results and
information given for male | | Harrison JWE, Packman EW, Abbott DD. 1958. Acute oral toxicity and chemical and physical properties
of arsenic trioxides. AMA Arch ind Health 17:118-123. LaWall and Harrison Research Laboratories | | Arsenic III trioxide | 14.6 | 385 | 350 - 424 (95%
CL) | Litchfield and
Wilcoxon method | Holtsman rats; 300 -
500 g; 100-300 days
old (13 - 41 weeks) | male and
female | oral; gelatin
capsules | 20, 50, 100, 250, 500, 750,
1000 (all in mg/kg) | rats dosed under light anesthesia; death occurred within 4 days | approximately 70 rats used; 24 hour fasting before dosing | Baker
Analyzed
Reagent with
0.02% | Done AK and Peart AJ. 1971. Acute Toxicities of Arsenical Herbicides.
Cinical Toxicology, 4(3):343 - 355.
University of Utah, Salt Lake City, UT | | Atropine sulfate | 600 | 600 | 530 - 675 | Litchfield and
Wilcoxon method | rats | NA | oral | NA | NA | reference in German | | RTECS REFERENCE-GERMAN CODEN: AIPTAK Bibliographic
Data: Archives Internationales de Pharmacodynamie et de Therapie.
(Heymans Institute of Pharmacology, De Pintelaan 185, B-9000Ghent,
Belgium) V-4-1898- CODEN Reference: 155,393,1965 Wirth W,
Gosswald R. 1965. Pharmakologische Untersuchungen in der Reihe der
Diphenylcarbamidsaurethioester. Arch Int Pharmacodyn 155 (2):393-417 | | Atropine sulfate | 600 | 622 | +/- 36 | NA | Sprague-Dawley
rats; from Charles
River; adult | male | oral | NA | NA | information from: drug applications
from pharmaceutical manufacturers, the
literature, and FDA labs | | Goldenthal EI. 1971. A compilation of LD50 values in newborn and adult animals. Toxicology and Applied Pharamaeology 18:185-207. Bureau of Drugs, Food and Drug Administration, Dept. of Health, Education, and Welfare, Rockville, MD. | | Atropine sulfate | 600 | 698.7 | 629.2 - 776.0 | Bliss-Probit method | Sprague-Dawley rats; 5 weeks | male | oral gavage | dissolved in saline; range (mg/kg) of doses 500, 625, 781, 977 | rats observed at 6 hours after dossing and a
once a day for 1-2 weeks; most rats dead
within 3 days; 20 of 40 rats died; toxic
symptoms: decrease of spontaneous
movement, myasthenia and coma observed
at 10 minutes; stretching of the limbs,
abdominal posture, anaerosis and cardiac
arrest after convulsions; dose (mg/kg), dead
rats per dose: 500 – 1/10; 625 – 4/10; 781 –
6/10; 787 – 100; 625 – 4/10; 781 – | animals acclimated to environment for 1 week before testing; 4 groups of 10 rats each; fasted 16 hours before dosing; 100% lethal dose = 977 mg/kg; 0% lethal dose = 500 mg/kg | Tokyo Kasei
Kogyo Co. | Kitagawa H, Saito H, Sugimoto T, Yanaura S, Kitagawa H, Hosokawa T, Sakamoto K. 1982. Effects of diiospropyl-1,3-dithiol-2-ylidene malonate (NKK-105) on acute toxicity of various drugs and heavy metals. J Toxicol Sci 7(2):123-4. Chiba University; Hoshi College of Pharmacy; Showa University — Japan | | Atropine sulfate | 600 | 840 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 200, 400, 800, 1000, 1600
mg/kg | 6.016-027 _ 10/10
200 mg/kg: 0/3 dead; 400 mg/kg: 0/3 dead;
800 mg/kg: 1/3 dead; 1600 mg/kg: 3/3 dead;
4 of 12 rats dead; LD50 based on 12 rats
used; LD50 recalculated using US EPA
Benchmark Dose software; Lorke used data
from 1000 mg/kg in range finder for all
animal groups; omitted this data in
recalculation; orginial LD50 from Lorke =
900 mg/kg | rats acclimated for 5 days, rats observed for 14 days; 4 groups of rats used for each dose (1, 2, 3, 5 rats per group; 11 rats per dose); 9 rats for initial range finding; 10 mg/kg - 0/3 dead; 100 mg/kg 0/3 dead; 1000 mg/kg - 2/3 dead | | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|--------|--|--|--|---|--------------------|--| | Atropine sulfate | 600 | 874 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 200, 400, 800, 1000, 1600 mg/kg | 200 mg/kg: 0/5 dead; 400 mg/kg: 0/5 dead;
800 mg/kg: 1/5 dead; 1600 mg/kg: 5/5 dead;
6 of 20 rats dead; LD50 based on 20 rats
used; LD50 recalculated using US EPA
Benchmark Dose software; Lorke used data
from 1000 mg/kg in range finder for all
animal groups; omitted this data in
recalculation; orginial LD50 from Lorke =
950 mg/kg. | rats acclimated for 5 days; rats observed for 14 days; 4 groups of rats used for each dose (1, 3, 5 rats per group; 11 rats per dose); 9 rats for initial range finding; 10 mg/kg - 0/3 dead; 100 mg/kg - 0/3 dead; 1000 mg/kg - 2/3 dead | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275-288. Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Atropine sulfate | 600 | 878 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 200, 400, 800, 1000, 1600 mg/kg | 950 me/kg. 2011 dead; 400 mg/kg: 0/11 dead; 800 mg/kg: 2/11 dead; 1600 mg/kg: 11/11 dead; 1600 mg/kg: 11/11 dead; 1500 mg/kg: 11/11 dead; 1500 mg/kg: 11/11 dead; 1500 mg/kg: 11/11 dead; 1500 feadcalulated using US EPA Benchmark Dose software; Lorke used data from 1000 mg/kg in range finder for all animal groups; omitted this data in recalculation; orginial LD50 from Lorke = 900 mg/kg: 11/11 dead; 11 | rats acclimated for 5 days; rats observed for 14 days; 4 groups of rats used for each dose (1, 2, 3, 5 rats per group; 11 rats per dose); 9 rats for initial range finding; 10 mg/kg - 0/3 dead; 100 mg/kg - 0/3 dead; 1000 mg/kg - 2/3 dead | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Atropine sulfate | 600 | 1135 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 200, 400, 800, 1000, 1600 mg/kg | 200 mg/kg: 0/1 dead; 400 mg/kg: 0/1 dead;
800 mg/kg: 0/1 dead; 1600 mg/kg: 1/1 dead;
1 of 4 rats dead; LD50 based on 4 rats used;
LD50 recalculated using US EPA Benchmart
Dose software; Lorke used data from 1000
mg/kg in range finder for all animal groups;
omitted this data in recalculation; orginial
LD50 from Lorke = 950 mg/kg | rats acclimated for 5 days; rats observed for 14 days; 4 groups of rats used for each dose (1, 2, 3, 5 rats per group; 11 rats per dose); 9 rats for initial range finding; 10 mg/kg - 0/3 dead; 100 mg/kg - 0/3 dead; 1000 mg/kg - 2/3 dead | NA | Lorke D. 1983. A new approach to practical acute toxicity
testing. Arch Toxicol 54(4):275-288. Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Atropine sulfate | 600 | 1136 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 200, 400, 800, 1000, 1600 mg/kg | 200 mg/kg: 0/2 dead; 400 mg/kg: 0/2 dead;
800 mg/kg: 0/2 dead; 1600 mg/kg: 2/2 dead;
2 of 8 rats dead; LD50 based on 8 rats used;
LD50 recalculated using US EPA Benchmarl
Dose software; Lorke used data from 1000
mg/kg in range finder for all animal groups;
omitted this data in recalculation; orginial
LD50 from Lorke = 950 mg/kg | rats acclimated for 5 days; rats observed
for 14 days; 4 groups of rats used for
each dose (1, 2, 3, 5 rats per group; 11
rats per dose); 9 rats for initial range
finding; 10 mg/kg - 0/3 dead; 100 mg/kg
0/3 dead; 1000 mg/kg - 2/3 dead | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Boric acid | 2662 | 2660 | +/- 220
(S.E.; slope = 7.7) | Litchfield and Fetig
(1941) | rats | NA | oral | NA | NA | 45 rats used | NA | RTECS REFERENCE CODEN: JAMAAP Bibliographic Data: JAMA, Journal of the American Medical Association. (AMA, 535 N. Dearborn St., Chicago, II. 60610) VI- 1883-CODEN Reference: 128,266,1945.—Pfeiffer CC, Hallman LF, Gersh IG. 1945. Boric Acid Ointment. A study of possible intoxication in the treatment of burns. Journal of the American Medical Association 128:266-274. National Naval Medical Center, Bethesda, MD | | Boric acid | 2662 | 2660 | +/- 200
(S.E.) | NA | rats; 220 +/- 40 g | | oral;
intragastric | NA | NA | (source of information not provided);
reference in Russian; | NA | Izmerov NF, Sanotsky IV, Sidorov KK. 1982. Toxicometric Parameters of
Industrial Toxic Chemicals under Single Exposure. International Register
of Potentially Toxic Chemicals (IRPTC). United Nations Environment
Programme (UNEP). Centre of International Projects, GKNT. Moscow,
Russia. | | Boric acid | 2662 | 3160
(estimate) | NA | NA | Long Evans rats
from Diablo
Laboratories; 85-
118 g | male | oral; stomach
intubation | 50% w/v in distilled water suspension | observed for 14 days; signs included
depression, ataxia, convulsion and death | fasted rats; 6 groups of 5 rats each; total of 30 rats | NA | Weir RJ Jr, Fisher RS. 1972. Toxicologic studies on borax and boric acid. Toxicol Appl Pharmac 23:351-364. | | Boric acid | 2662 | 3450 | 2950-4040
(CL) | NA | Albino Sprague-
Dawley rats
(Charles River
SPF); 267-310 g | male | oral; stomach
intubation | 50% w/v in 0.5% aqueous
methylcellulose suspension | observed for 14 days; signs included depression, ataxia, convulsion and death | fasted rats; 6 groups of 5 rats each; total of 30 rats | NA | Weir RJ Jr, Fisher RS. 1972. Toxicologic studies on borax and boric acid. Toxicol Appl Pharmae 23:351-364. | | Boric acid | 2662 | 4080 | 3640-4560
(CL) | NA | Albino Sprague-
Dawley rats
(Charles River
SPF); 206-248 g | female | oral; stomach
intubation | 50% w/v in 0.5% aqueous
methylcellulose suspension | observed for 14 days; signs included
depression, ataxia, convulsion and death | fasted rats; 6 groups of 5 rats each; total of 30 rats | NA | Weir RJ Jr, Fisher RS. 1972. Toxicologic studies on borax and boric acid. Toxicol Appl Pharmac 23:351-364. | | Boric acid | 2662 | 5140 | 4750 - 5580
(range is +/- 1.96
S.D.) | Thompson method;
Weil tables | Carworth-Wistar
rats; 90-120 g; 4-5
weeks | male | oral gastric
intubation | in aqueous solution;
concentration intubated =
200 mg/mL; dosages
arranged in a logarithmic
series differing by a factor of
2 | LD50 based on mortalities during a 14 day period | non-fasted; groups of 5 rats; single oral dose toxicity | reagent grade | Smyth HF Jr. Carpenter CP, Weil CS, Pozzani UC, Striegel JA, Nycum, JS, 1969. Range-finding toxicity data: List VII. Am Ind Hyg Assoc J 30: 470-476. Carnegie-Mellon University, Pittsburgh, Pt. (LD50 value) Smyth HF Jr. Carpenter CP, Weil CS, Pozzani UC, Striegel JA. 1962. Range-finding toxicity data: List VI. Am Ind Hyg Assoc J 23:95-107. Mellon Institute of Industrial Research, Pittsburg, Pt. (experimental Inarameters) | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|---|--|--|---|--|--------------------|--|--|--|--|--------------------|--| | Busufan | 110
(mouse)
no rat oral
data from
RTECS | 2 | NA Value used by RC from 1983/84
RTECS. No rat oral LD50 in current
RTECS. This study treated rats with 0.13
mg/kg busulfan, which was 7% LD50.
LD50 = 1.9 mg/kg | | Schmahl D, Osswald H. 1970. Experimental studies on the carcinogenic effects of anticancer chemotherapeutics and immunosuppressive agents.
Arzneimittelforschung. Oct;20(10):1461-1467. | | Busufan | 110
(mouse)
no rat oral
data from
RTECS | 14 | 6
(SE) | probit method Finney
(1962) | JO13 strain rats;
170-250 g; 10-12
weeks | male and
female | oral | as aqueous emulsion with tragacanth powder | 30 day observation | fasted rats; rats from CEN Breeding
Centre Mol, Belgium from former L
strain of Institute of Cancer | NA | Dunjic A, Cuvelier A-M. 1973. Survival of rat bone marrow cells after treatment with Myleran and Endoxan. Experimental Hematology 1:11-21. | | Busufan | 110
(mouse)
no rat oral
data from
RTECS | 28 | 21 - 38
(95% CL) | NA | Sprague-Dawley
strain rats | male | oral | doses (mg/kg): 20, 30, 40, 50, 100, 150, 200 | observed for 14 days; doses (mg/kg, deaths at 14 days: 20 1/5; 30 2/5; 40, 50, 100, 150, and 200 5/5 | 5 rats per dose; 35 rats used | NA | RTECS REFERENCE-MOUSE ORAL Kiso to Rinsho. Clinical
Report. 1971. (Yubunsha Co., Ltd., 1-5, Kanda Suda-Cho, Chiyoda-ku, KS
Bldg., Tokyo 101, Japan. 5(12): 1894. | | Busufan | 110
(mouse)
no rat oral
data from
RTECS | 29 | 23 - 38
(95% CL) | NA | Sprague-Dawley
strain rats | female | oral | doses (mg/kg): 10, 30, 40, 50, 100, 150, 200 | observed for 14 days; doses (mg/kg, deaths at 14 days: 10 1/5; 30 2/5; 40 4/5; 50, 100, 150, and 200 5/5 | 5 rats per dose; 35 rats used | NA | RTECS REFERENCE-MOUSE ORAL Kiso to Rinsho. Clinical
Report. 1971. (Yubunsha Co., Lid., 1-5, Kanda Suda-Cho, Chiyoda-ku, KS
Bidg., Tokyo 101, Japan. 5(12): 1894. | | Cadmium II chloride | 88 | 47 | 43 - 51
(95% CL) | Thompson and Weil
(1952); method of
moving averages | albino rats; 2 weeks | male and
female | oral; stomach
tube | 1 mL/200 g bw | observed after 8 days after single oral administration | 6 dose levels per group, 6 rats per group;
36 rats used | NA | Kostial K, Kello D, Jugo S, Rabar I, Maljkovic T. 1978. Influence of age on metal metabolism and toxicity. Environ Health Perspect 25:81-86.
Yugoslav Academy of Sciences and Art, Zagreb, Yugoslavia RTECS REFERENCE COEDS: AFDOA Bibliographic Data: | | Cadmium II chloride | 88 | 88 | NA | NA | rats | NA | oral; stomach
tube | NA | salivation, vomiting, diarrhea; onset within 30 minutes | information from the laboratories of Division of Pharmacology, U.S. FDA.; fasted animals | NA | Quarterly Bulletin-Association of Food and Drug Officials of the United States. (Denver, CO) V.3-38, 1939-74. CODEN Reference: 15,122,1951—Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides. Quarterly Bulletine (Association of Food and Drug Officials of the United States). Vol. 15122-133. V.S. Food and Drug Deficials of the United States). Vol. 15122-133. V.S. Food and Drug Deficials of the United States). | | Cadmium II chloride | 88 | 109 | 86 - 136
(95% CL) | Thompson and Weil
(1952); method of
moving averages | albino rats; 54
weeks | female | oral; stomach
tube | 1 mL/200g bw | observed after 8 days after single oral administration | 6 dose levels per group, 6 rats per group;
36 rats used; | NA | Kostial K, Kello D, Jugo S, Rabar I, Maljkovic T. 1978. Influence of age on metal metabolism and toxicity. Environ Health Perspect 25:81-86. Yugoslav Academy of Sciences and Art, Zagreb, Yugoslavia | | Cadmium II chloride | 88 | 132 | 109.4 - 159.3
(95% CL) | Bliss-Probit method |
Sprague-Dawley
rats; 5 weeks | male | oral gavage | dissolved in saline; range (mg/kg) of doses 66.5, 86.5, 112.5, 146.2, 190.1, 247.1 | rats observed at 6 hours after dosing and a once a day for 1 - 2 weeks; most rats found dead within 3 days; 29 of 60 rats died; toxic symptoms: drooling, diarrhea, nasal bleeding; dose (mg/kg), rats dead per dose: 66.5 – 0/10; 86.5 – 1/10; 112.5 – 3/10; 1146.2 – 6/10: 190.1 – 9/10: 247.1 – 10/10 | animals acclimated to environment for 1 week before testing; 6 groups of10 rats each; fasted 16 hours before dosing; 100% lethal dose = 247.1 mg/kg; 0% lethal dose = 66.5 mg/kg | | Kitagawa H, Saito H, Sugimoto T, Yanaura S, Kitagawa H, Hosokawa T, Sakamoto K. 1982. Effects of diiospropyl-1,3-diftiol-2-ylidene malonate (NKK-105) on acute toxicity of various drugs and heavy metals. J Toxicol Sci 7(2):123-34. Chiba University: Hoshi College of Pharmacy; Showa University Japan | | Cadmium II chloride | 88 | 170 | 140 - 206 (95%
CL) | Thompson and Weil
(1952); method of
moving averages | albino rats; 18
weeks | female | oral; stomach
tube | 1 mL/200 g bw | observed after 8 days after single oral administration | 6 dose levels per group, 6 rats per group;
36 rats used | NA | Kostial K, Kello D, Jugo S, Rabar I, Maljkovic T. 1978. Influence of age on metal metabolism and toxicity. Environ Health Perspect 25:81-86.
Yugoslav Academy of Sciences and Art, Zagreb, Yugoslavia | | Cadmium II chloride | 88 | 211 | 182 - 252 (95%
CL) | Thompson and Weil
(1952); method of
moving averages | albino rats; 6 weeks | female | oral; stomach
tube | 1 mL/200 g bw; 6 dose
levels in each group | observed after 8 days after single oral administration | 6 dose levels per group, 6 rats per group;
36 rats used | NA | Kostial K, Kello D, Jugo S, Rabar I, Maljkovic, T. 1978. Influence of age on metal metabolism and toxicity. Environ Health Perspect 25:81-86.
Yugoslav Academy of Sciences and Art, Zagreb, Yugoslavia | | Cadmium II chloride | 88 | 240 | 198 - 291
(95% CL) | Thompson and Weil;
1952; method of
moving averages | albino rats; 3 weeks | male and
female | oral; stomach
tube | 1 mL/200 g bw; 6 dose
levels in each group | observed after 8 days after single oral administration | 6 dose levels per group, 6 rats per group;
36 rats used | NA | Kostial K, Kello D, Jugo S, Rabar I, Maljkovic, T. 1978. Influence of age on metal metabolism and toxicity. Environ Health Perspect 25:81-86.
Yugoslav Academy of Sciences and Art, Zagreb, Yugoslavia | | Caffeine | 192 | 192 | +/- 18
(S.E.) | NA | albino rats | NA | oral | NA | NA | see Boyd 1959 | NA | RTECS REFERENCE CODEN: JNDRAK Bibliographic Data:
Journal of New Drugs. (Albamy, NY) V.1-6, 1961-66. For publisher
information, see JCPCBR. CODEN Reference: 5,252,1965. ——
Boyd EM. 1965. Caffeine addiction and drug toxicity. The Journal of New
Drugs 5:252. (secondary reference) Oueen's University, Canada | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|--|--------|--|--|---|---|--|--| | Caffeine | 192 | 192 | +/- 18
(S.E.) | NA | albino rats; 203 +/-
28 g; 3-6 months | female | oral; stomach tube | aqueous solution; 2 mL/kg
dose; 0 mg/kg-20 rats; 160
mg/kg-8 rats; 180 mg/kg-16
rats; 200 mg/kg-8 rats;
220 mg/kg-8 rats | 19 fais survived, 21 rais died; death time 500 + 1/9 shours after dosing; survivors: lack of curiosity, weak, tense, hyperreflexia, ataxic, cataleptic stances, swollen and inflammed eyelids, loose stools, tremors, anorexia, loss of body weight, fluctuation in body temperature; normal clinical appearance at 72 hours; dead rais: similar clinical signs as survivors, clinical deterioration progressive from 10th hour till death, didn't eat or drink, diarrhea, loss of body weight, anuric, drop in body temperature; two-thirds died of respiratory failure following tetanic convulsions; remainder died of | fasted for 16 hours; 60 rats used | NA | Boyd EM. 1959. The acute oral toxicity of caffeine. Toxic Appl Pharmac 1: 250-257. Queen's University, Ontario, Canada | | Caffeine | 192 | 247 | 220 - 277
(95% CL;
slope=7.7) | Cornfield and Mantel (1950) | Sprague-Dawley
CD rats; mean wt.
of 164 g; young
adult | female | oral intubation | | observed for 15 days; death usually 1-2 days
after dosing; diarrhea, wt loss/gain; 40% of
female rats died | 15 rats per dose level; 16 hour fasting
before dosing; 5 -6 dose levels; 75-90
rats | Schwarz/Man
n - Becton
Dickinson Co. | Palm PE, Arnold EP, Rachwall PC, Leyczech JC, Teague KW, Kensler CJ.
1978. Evaluation of the teratogenic potential of fresh brewed coffee and
caffeine in the rat. Toxic Appl Pharmac 44:1 - 16. Arthur D, Little, Inc., Cambridge, MA | | Caffeine | 192 | 264 | +/- 10
(S.E.) | | CBL Wistar albino
rats; 150 - 200 g | female | intragastric | single dose; range of 200 -
350 mg/kg; dissolved in
distilled water; 20 mL/kg
volume to each rat | observed for 5 days | no overnight fasting; 50 rats used;
groups of 10 rats | Merck
Reagent | Boyd EM, Dolman M, Knight LM, Sheppard EP. 1965. The chronic oral toxicity of caffeine. Canad J Physiol Pharm 43:995 - 1007.
Queen's University, Ontario, Canada | | Caffeine | 192 | 279 | 259 - 302
(95% CI) | Probit analysis | Crl-CD rats;
Charles River
Breeding lab; 220 -
280 g; 60 days old | male | oral;
intragastric
intubation | 0.5 - 3.9% suspension;
dissolved/suspended in corn
oil; single dose; 100, 200,
250, 300, 500 mg/kg doses | observed daily for 14 days; death within 2
days; toxic symptoms: staining of the face,
wet perineal area, slight weight loss,
lacrimation, lethargy, diarrhea | fasted 24 hours before dosing; 5 groups
of 10; 50 rats used; 19 rats died | 99+% pure;
Aldrich
Chemical Co. | Dashiell OL, Kennedy GL Jr. 1984. The effects of fasting on the acute oral toxicity of nine chemicals in the rat. J Appl Toxicol 4(6): 320-325.
E.I. Du Pont de Nemours & Co., Newark, DE | | Caffeine | 192 | 288 | +/- 6
(S.E.) | Linear regression.
Boyd (1965) | Wistar albino rats;
125-200 g | male | oral;
intragastric
dosing | dissolved in distilled water;
20 mL/kg dose; 14 doses
ranging from 162 to 354
mg/kg; each dose given to 6 ·
10 rats | observations recorded hourly 1st day then at 24 hour intervals, ave time to death is 14 hours; 1 - 40 hours range; cause of early deaths: tonic-clonic convulsions followed by resipiratory failure; for delayed death, immediate cause was hypothermic coma and respiratory failure following loss of corneal reflexes, impaired respiration, pallor, cyanosis, anuria; drop in colonic temperature; hypothermia appeared within 2 hours, peaked at 8 - 24 hour at which time it was dose dependent; hypothermia associated with stupor, anorexia, oligodipsia, loss of body weight, oliguria, aciduria, proteinuria | fasted for 16 hours; 84 - 140 rats used; unanethetized rats | U.S.P. grade | Boyd EM, Liu SJ, Singh J. 1968. The toxicity of aspirin, phenacetin, and caffeine following rectal administration. Clin Toxicol 1:425 - 430.
Queen's University. Ontario, Canada | | Caffeine | 192 | 300 | +/- 29
(S.E.) | Linear regression.
Boyd (1965) | Wistar albino rats;
125-200 g | male | oral;
intragastric
dosing | dissolved in distilled water;
20 mL/kg dose; 14 doses
ranging from 162 to 354
mg/kg; each dose given to 6
10 rats | observations recorded hourly 1st day then at 24 hour intervals; ave time to death is 14 hours; 1 - 40 hours range; cause of early deaths: tonic-clonic convulsions followed by resipiratory failure; for delayed death, immediate cause was hypothermic coma and respiratory failure following loss of corneal reflexes, impaired respiration, pallor, cyanosis, amuria; drop in colonic temperature; hypothermia appeared within 2 hours, peaked at 8 - 24 hour at which time it was dose dependent; hypothermia associated with stupor, anorexia, oligodipsia, loss of body weight, oliguria, aciditar, proteinuria | fasted for 16 hours; 84 - 140 rats used; rats used; rats given thiopental
before dosing (anesthetized rats before dosing) | U.S.P. grade | Boyd EM, Liu SJ, Singh J. 1968. The toxicity of aspirin, phenacetin, and caffeine following rectal administration. Clin Toxicol 1:425 - 430. Queen's University, Ontario, Canada | | Caffeine | 192 | 310 | +/- 33 | NA | rats; 220 +/- 40 g | NA | oral;
intragastric | NA | NA | (source of information not provided) | | Izmerov NF, Sanotsky IV, Sidorov KK. 1982. Toxicometric Parameters of
Industrial Toxic Chemicals under Single Exposure. International Register
of Potentially Toxic Chemicals (IRPTC). United Nations Environment
Programme (UNEP). Centre of International Projects, GKNT. Moscow,
Russia | | Caffeine | 192 | 344 | 307 - 383
(95% CI) | Probit analysis | Sprague-Dawley
rats; 190-300 g | male | oral gavage | geometric progression of 14
for dosing | observed for 14 days after dosing; | fasted 18 - 20 hours before dosing;
conventional LD50 method; groups of
10; 40 rats used | NA | Bruce RD. 1987. A confirmatory study of the up-and-down method for acute oral toxicity testing. Fundam Appl Toxicol 8(1): 97-100. The Proctor and Gamble Co., Cincinnati, OH | | Caffeine | 192 | 355 | 312 - 403
(95% CL;
slope=5.1) | Cornfield and Mantel (1950) | Sprague Dawley
CD rats; mean wt.
of 210 g; young
adult | male | oral intubation | single dose; dose in water | observed for 15 days; death usually 1-2 days
after dosing; diarrhea, wt loss/gain; 21% of
male mice died | 15 rats per dose level; 16 hour fasting
before dosing; 5 -6 dose levels; 75-90
rats | Schwarz/Man
n - Becton
Dickinson Co. | Palm PE, Arnold EP, Rachwall PC, Leyczech JC, Teague KW, Kensler CJ.
1978. Evaluation of the teratogenic potential of fresh brewed coffee and | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|---|--|--|--|--------|--|--|---|--|---------------------------------------|---| | Caffeine | 192 | 421 | 320 - 553
(95% CI) | Probit analysis | Sprague-Dawley
rats; 190-300 g | male | oral gavage | NA | observed for 7 days | fasted 18 - 20 hours before dosing; Up-
and-down LD50 method; 9 rats used | NA | Bruce RD. 1987. A confirmatory study of the up-and-down method for acute oral toxicity testing. Fundam Appl Toxicol 8(1): 97-100. The Proctor and Gamble Co., Cincinnati, OH | | Caffeine | 192 | 483 | 433 -562
(95% CI) | Probit analysis | Crl-CD rats;
Charles River
Breeding lab; 220 -
280 g; 60 days old | male | oral;
intragastric
intubation | 0.5 - 3.9% suspens;
dissolved or suspended in
corn oil; single dose; 300,
400, 450, 650 mg/kg doses | observed daily for 14 days; death within 3
days; toxic symptoms: staining of the face,
wet perineal area, slight weight loss,
lacrimation, lethargy, diarrhea | non fasted; 4 groups of 10; 40 rats used; 15 rats died | 99+% pure;
Aldrich
Chemical Co. | Dashiell OL, Kennedy GL Jr. 1984. The effects of fasting on the acute oral toxicity of nine chemicals in the rat. J Appl Toxicol 4(6): 320-325.
E.I. Du Pont de Nemours & Co., Newark, DE | | Carbamazepine | 1957 | 1957 | NA | NA | rats | NA | oral | NA | NA | reference in Japanese | NA | RTECS REFERENCE Japanese Kokai Tokyo Koho Patents. 54-
163823 (U.S. Patent and Trademark Office. 79-163823) | | Carbamazepine | 1957 | 4025 | NA | NA | rats; 120-140 g | female | oral | suspension in arabica gum | observed for 8 days | reference paper in German; 20 animals
per dose | NA | Stenger Von EG, Roulet FC. 1964. Zur Toxikologie des Antiepilepticum
Tegretol. Medicina Experimentalis 11:191-201. | | Carbon tetrachloride | 2350 | 1020 | 861 - 1211
(95% CL) | Weil (1952) | Wistar-derived
Porton strain rats
(SPF); 100 - 160 g | male | oral gastric intubation | 1:1 (v/v) mixture in liquid
paraffin; lightly anesthetized
w/ether; geometric doses by
factor of 12 or 144 | deaths observed for 1 week | 18 hour fasting before dosing; 20 - 25 rats used; groups of 5 rats; normal stock diet | NA | McLean AEM, McLean EK. 1966. The effect of diet and 1,1,1-trichloro-
2,2-bis (p-chlorophenyl) ethane (DDT) on microsomal hydroxilating
enzymes and on sensitivity of rats to carbon tetrachloride poisoning.
Biochem J 100:564-571. Royal Free Hospital, London, UK | | Carbon tetrachloride | 2350 | 2343 | 2136 - 2566
(95% CL) | Weil (1952) | Wistar-derived
Porton strain rats
(SPF); 100 - 160 g | male | oral gastric intubation | 1:1 (v/v) mixture in liquid
paraffin; lightly anesthetized
w/ether; geometric doses by
factor of 1.2 or 1.44 | deaths observed for 1 week | 18 hour fasting before dosing; 20 - 25 rats used; groups of 5 rats; protein-free diet; rats fed protein-free diet 1 - 3 weeks before dosing; continued protein-free diet through out observation period | NA | McLean AEM, McLean EK. 1966. The effect of diet and 1,1,1-trichloro-
2,2-bis (p-chlorophenyl) ethane (DDT) on microsomal hydroxilating
enzymes and on sensitivity of rats to carbon tetrachloride poisoning.
Biochem J 100:564-571. Royal Free Hospital, London, UK | | Carbon tetrachloride | 2350 | 2350 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 1500, 2000, 2800, 3900
mg/kg | 1500 mg/kg: 0/1 dead; 2000 mg/kg: 0/1
dead; 2800 mg/kg: 1/1 dead; 3900 mg/kg:
1/1 dead; 2 of 4 rats dead; LD50 based on 4
rats used | rats acclimated for 5 days; rats observed for 14 days; 4 groups of rats used for each dose (1, 2, 3, 5 rats per group; 11 rats per dose); 9 rats for initial range finding; 10 mg/kg - 0/3 dead; 100 mg/kg - 2/3 dead | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut für Toxikologie, Wuppertal, Federal Republic of Germany | | Carbon tetrachloride | 2350 | 2500 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 1500, 2000, 2800, 3900
mg/kg | 1500 mg/kg: 0/2 dead; 2000 mg/kg: 2/2
dead; 2800 mg/kg: 1/2 dead; 3900 mg/kg:
2/2 dead; 5 of 8 rats dead; LD50 based on 8
rats used | rats acclimated for 5 days; rats observed for 14 days; 4 groups of rats used for each dose (1, 2, 3, 5 rats per group; 11 rats per dose); 9 rats for initial range finding; 10 mg/kg - 0/3 dead; 100 mg/kg - 2/3 dead | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut für Toxikologie, Wuppertal, Federal Republic of Germany | | Carbon tetrachloride | 2350 | 2500 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 1500, 2000, 2800, 3900
mg/kg | 1500 mg/kg; 0/5 dead; 2000 mg/kg; 3/5
dead; 2800 mg/kg; 3/5 dead; 3900 mg/kg;
5/5 dead; 11 of 20 rats dead; LD50 based on
20 rats used | rats acclimated for 5
days; rats observed
for 14 days; 4 groups of rats used for
each dose (1, 2, 3, 5 rats per group; 11
rats per dose); 9 rats for initial range
finding; 10 mg/kg - 0/3 dead; 100 mg/kg·
0/3 dead; 1000 mg/kg - 2/3 dead | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut für Toxikologie, Wuppertal, Federal Republic of Germany | | Carbon tetrachloride | 2350 | 2500 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 1500, 2000, 2800, 3900
mg/kg | 1500 mg/kg; 0/11 dead; 2000 mg/kg; 5/11 dead; 2800 mg/kg; 6/11 dead; 2900 mg/kg; 11/11 dead; 22 of 44 rats dead; LD50 based on same rats used for other Lorke (1983) values | rats acclimated for 5 days; rats observed for 14 days; 4 groups of rats used for each dose (1, 2, 3, 5 rats per group; 11 rats per dose); 9 rats for initial range finding; 10 mg/kg - 0/3 dead; 100 mg/kg - 2/3 dead | NA | RTECS REFERENCE CODEN: ARTODN Bibliographic Data: Archives of Toxicology. (Springer-Verlag, Heidelberger Pl. 3, D-1000 Berlin 33, Fed. Rep. Ger.) V32-1974-CODEN Reference: 54,275,1983. Lorke D. 1983. "A new approach to practical acute toxicity testing." Arch Toxicol 544(4):275-288. Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Carbon tetrachloride | 2350 | 2821
(1.77 mL/kg; sp.
density is 1.594;
convert LD50 to
mg/kg | NA | Thompson method;
Weil tables | Carworth-Wistar
rats; 90-120 g; 4-5
weeks | male | oral gastric
intubation | in aqueous solution;
concentration intubated = 10
mg/mL; dosages arranged in
a logarithmic series differing
by a factor of 2 | LD50 based on mortalities during a 14 day | non-fasted; groups of 5 rats; single oral dose toxicity | reagent grade | Smyth HF, Weil CS, West JS, Carpenter CP (1970). An exploration of joint toxic action:II. Equitoxic versus equivolume mixtures. Toxicol Appl Pharmacol. 17:498-503. (LD50 value)—— Smyth HF Jr, Carpenter CP, Weil CS, Pozzani UC, Striegel JA, Nycum JS. 1969. Range-inding toxicity data: List VII. Am Ind Hyg Assoc J 30:470-476. Carnegie-Mellon University, Pittsburgh, P.4.———— Smyth HF Jr, Carpenter CP, Weil CS, Pozzani UC, Striegel JA. 1962. Range-finding toxicity data: List VI. Am Ind Hyg Assoc J 32:95-107. Mellon Institute of Industrial Research, Pittsburg, P.4 (experimental arranges of the control | | Carbon tetrachloride | 2350 | 2850 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 1500, 2000, 2800, 3900
mg/kg | 1500 mg/kg: 0/3 dead; 2000 mg/kg: 0/3
dead; 2800 mg/kg: 1/3 dead; 3900 mg/kg:
3/3 dead; 4 of 412 rats dead; LD50 based on
12 rats used | rats acclimated for 5 days; rats observed for 14 days; 4 groups of rats used for each dose (1, 2, 3, 5 rats per group; 11 rats per dose); 9 rats for initial range finding; 10 mg/kg - 0/3 dead; 1000 mg/kg - 2/3 dead | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275-288. Institut für Toxikologie, Wuppertal, Federal Republic of Germany | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|--------------------|--|---|--|--|---|---| | Carbon tetrachloride | 2350 | 2920 | 2450 - 3470
(95% CL) | NA | rats | male and
female | oral; stomach
intubation | 10 dosage levels; suspended
in corn oilk with acacia;
single dose | 190 rats used | NA | NA | McCollister DD, Hollingsworth RL, Oyen F, Rowe VK. 1955. Comparative inhalation toxicity of fumigant mixtures. Arch Ind Health pp.1 - 7. Dow Chemical, Midland, MI | | Carbon tetrachloride | 2350 | 2981
(1.87 mL/kg; sp.
density is 1.594;
convert LD50 to
mg/kg) | slope = 1.62 | Litchfield and
Wilcoxon method
(1949) | Scho: Wistar C rats;
150-180 g; 56 +/- 2
days | female | oral | single dose; 50 mg/kg bw
carbon tetrachloride in 5 mL
peanut oil/kg bw | 48 hour observation; LD50 determined on
rats monthly for a year and average reported
for whole year | reference in German; year 4 | NA | Von Schmidt P, Wolff DL, Burck D, Wilhelm M. 1979. Sensitivity of female Wistar rats to carbon tetrachloride, determined by the LD50, and the hexobarbital sleeping time after a single oral dose. Z Versuchstierkd. 21(3):153-162. Zentralinstitut fur Arbeitsmedizin der DDR, Berlin, Germany | | Carbon tetrachloride | 2350 | 3682
(2.31 mL/kg; sp.
density is 1.594;
convert LD50 to
mg/kg) | slope = 1.83 | Litchfield and
Wilcoxon method
(1949) | Scho: Wistar C rats;
150-180 g; 56 +/- 2
days | female | oral | single dose; 50 mg/kg bw
carbon tetrachloride in 5 mL
peanut oil/kg bw | 48 hour observation; LD50 determined on
rats monthly for a year and average reported
for whole year | reference in German; year 3 | NA | Von Schmidt P, Wolff DL, Burck D, Wilhelm M. 1979. Sensitivity of
female Wistar rats to carbon tetrachloride, determined by the LD50, and
the hexobarbital sleeping time after a single oral dose. Z Versuchstierkd.
21(3):153-162. Zentralinstitut für Arbeitsmedizin der DDR, Berlin,
Germann | | Carbon tetrachloride | 2350 | 4081
(2.56 mL/kg; sp.
density is 1.594;
convert LD50 to
mg/kg) | slope = 1.60 | Litchfield and
Wilcoxon method
(1949) | Zam:Wistar C rats;
150-180 g; 56 +/- 2
days | female | oral | single dose; 50 mg/kg bw
carbon tetrachloride in 5 mL
peanut oil/kg bw | 48 hour observation; LD50 determined on
rats monthly for a year and average reported
for whole year | reference in German; year 4 | NA | Von Schmidt P, Wolff DL, Burck D, Wilhelm M. 1979. Sensitivity of
female Wistar Tast to carbon tetrachloride, determined by the LD50, and
the hexobarbital sleeping time after a single oral dose. Z Versuchstierkd.
21(3):153-162. Zentralinstitut für Arbeitsmedizin der DDR, Berlin,
Germann | | Carbon tetrachloride | 2350 | 4288
(2.69 ml/kg;
sp.density is 1.594;
converted LD50 to
mg/kg | slope = 1.59 | Litchfield and
Wilcoxon method
(1949) | Zam:Wistar C rats;
150-180 g; 56 +/- 2
days | female | oral | single dose; 50 mg/kg bw
carbon tetrachloride in 5 mL
peanut oil/kg bw | 48 hour observation; LD50 determined on rats monthly for a year and average reported for whole year | reference in German; year 3 | NA | Von Schmidt P, Wolff DL, Burck D, Wilhelm M. 1979. Sensitivity of
female Wistar rats to carbon tetrachloride, determined by the LD50, and
the hexobarbital sleeping time after a single oral dose. Z Versuchstierkd.
21(3):153-162. Zentralinstitut für Arbeitsmedizin der DDR, Berlin,
Germann | | Carbon tetrachloride | 2350 | 4336
(2.72 mL/kg; sp.
density is 1.594;
convert LD50 to | slope = 1.44 | Litchfield and
Wilcoxon method
(1949) | Zam:Wistar C rats;
150-180 g; 56 +/- 2
days | female | oral | single dose; 50 mg/kg bw
carbon tetrachloride in 5 mL
peanut oil/kg bw | 48 hour observation; LD50 determined on rats monthly for a year and average reported for whole year | reference in German; year 2 | NA | Von Schmidt P, Wolff DL, Burck D, Wilhelm M. 1979. Sensitivity of
female Wistar rats to carbon tetrachloride, determined by the LD50, and
the hexobarbital sleeping time after a single oral dose. Z Versuchstierkd.
21(3):153-162. Zentralinstitut für Arbeitsmedizin der DDR, Berlin,
Germann | | Carbon tetrachloride | 2350 | mg/kg) 4670 (2.93 mL/kg; sp. density is 1.594; convert LD50 to mg/kg) | slope = 1.57 | Litchfield and
Wilcoxon method
(1949) | Zam:Wistar C rats;
150-180 g; 56 +/- 2
days | female | oral | single dose; 50 mg/kg bw
carbon tetrachloride in 5 mL
peanut oil/kg bw | 48 hour observation; LD50 determined on rats monthly for a year and average reported for whole year | reference in German; year 1 | NA | Von Schmidt P, Wolff DL, Burck D, Wilhelm M. 1979. Sensitivity of
female Wistar rats to carbon tetrachloride, determined by the LD50, and
the hexobarbital sleeping time after a single oral dose. Z Versuchstierkd.
21(3):153-162. Zentralinstitut für Arbeitsmedizin der DDR, Berlin,
Gemmen. | | Carbon tetrachloride | 2350 | > 5000 | NA | Dixon (1965) and
Bruce (1985) | Fischer 344 rats; 77 days old at test | female | oral gavage | in deionized water;
maximum volume dose 10
ml/kg; 5 dose levels: 0, 150,
500, 1500,
5000 mg/kg;
single dose | 7 day survival time | fasted overnight; initial dose levels =
100, 1000, and 5000 mg/kg; subsequent
doses selected by up-and-down method
(Bruce, 1985, 1987); 5 groups of 8 rats
each; 40 rats used; 7 -15 rats used in first
LD50 estimate | grad_; 99+%
pure; Aldrich | Berman E, Schlicht M, Moser VC, MacPhail RC. 1995. A multidisciplinary approach to toxicological screening: I. Systemic toxicity. J Toxicol Environ Health 45(2): 127-43. Health Effects Res. Lab., U.S.EPA, Research Triangle Park, NC | | Carbon tetrachloride | 2350 | 5453 | 4660 - 6404
(95% CI) | Probit analysis | Crl-CD rats from
Charles River
Breeding lab; 220-
280 g; 60 days old | male | oral;
intragastric
intubation | 15 - 45% solution dissolved
or suspended in corn oil;
single dose; 2500, 3000,
4000, 5000, 8000, 10000,
11000 mg/kg doses | observed daily for 14 days; death within 2
days; toxic symptoms: salivation, weakness,
pallor, lethargy, diarrhea, weight loss | 24 hour fast before dosing; 7 groups of
10; 70 rats used; 35 rats died; doses of
10000 mg/kg or greater administered in
2 portions at 15 minutes apart | 99+% pure;
E.I. Du Pont
de Nemours | Dashiell OL, Kennedy GL Jr. 1984. The effects of fasting on the acute oral toxicity of nine chemicals in the rat. J Appl Toxicol 4(6): 320-325.
E.I. Du Pont de Nemours & Co., Newark, DE | | Carbon tetrachloride | 2350 | 6200 | 5082 - 7564 | NA | rats; 220 +/- 40 g | | oral;
intragastric | NA NA | NA | (source of information not provided) | NA | Izmerov NF, Sanotsky IV, Sidorov KK, 1982. Toxicometric Parameters of
Industrial Toxic Chemicals under Single Exposure. International Register
of Potentially Toxic Chemicals (IRPTC). United Nations Environment
Programme (UNEP). Centre of International Projects, GKNT. Moscow,
Buserie. | | Carbon tetrachloride | 2350 | 7540
(4.73 mL/kg; sp.
density is 1.594;
convert LD50 to
mg/kg) | 6631 - 8576
(95% CL) | Weil (1952) | Sprague-Dawley
rats; 260-360 g; 12-
16 weeks | male | oral; stomach
tube | solution in 1.5 mL peanut
oil; light anesthesia; doses
(mL/kg) = 3.6, 4.5, 5.4, 6.4 | observed for 48 hour; doses (mL/kg), dead animals: 3.6 - 0/4; 4.5 - 1/4; 5.4 - 3/4; 6.4 - 4/4 | 16 rats used | British Drug
Houses Ltd,
Pool, Great
Britain | Pound AW, Hom L, Lawson TA. 1973. Decreased toxicity of dimethylnitrosamine in rats after treatment with carbon tetrachloride. Pathology 5:233-242. University of Queensland, Brisbane, Australia | | Carbon tetrachloride | 2350 | 10054 | 8758 - 11009
(95% CI; slope =
9.2) | Finney (1971) Probit
Analysis | Breeding lab; 220-
280 g; 60 days old | male | oral;
intragastric
intubation | 0.5 - 3.9% suspension;
dissolved or suspended in
corn oil; single dose; 2000,
2700, 3500, 4500, 8000,
10000, 11000, 12000, 14000,
15000, 17000 mg/kg doses | observed daily for 14 days; death within 3
days; toxic symptoms: salivation, weakness,
pallor, lethargy, diarrhea, weight loss | non fasted; 11 groups of 10; 110 rats
used; 49 rats died; doses of 10000
mg/kg or greater were administered in 2
portions at 15 minutes apart | 99+% pure;
E.I. Du Pont
de Nemours | Dashiell OL, Kennedy GL Jr. 1984. The effects of fasting on the acute oral toxicity of nine chemicals in the rat. J Appl Toxicol 4(6): 320-325.
E.I. Du Pont de Nemours & Co., Newark, Deb data from EPA TSCATS database; Oral LD50 test in rats with methane, letrachloro-* with cover letter dated 081092; (1981) EPA Document No. 88-920010018 Fiche No. OTS0571676; E.I Dupont Deckemours & Co., Inc./Haskell Labs | | Chloral hydrate | 479 | 285 | +/- 21
(S.E.) | NA | Charles River
Sprague-Dawley
rats; 1-2 days | NA | oral | NA | NA | data is from Yeary et al.1966 | NA | Goldenthal El. 1971. A compilation of LD50 values in newborn and adult animals. Toxicology and Applied Pharamacology 18:185-207. | | Chloral hydrate | 479 | 479 | +/- 42
(S.E.) | NA | Charles River
Sprague-Dawley
rats; adult | NA | oral | NA | NA | data is from Yeary et al.1966 | NA | RTECS REFERENCE CODEN: TXAPA9 Bibliographic Data: Toxicology and Applied Pharmacology. (Academic Press, Inc., 1 E. First St., Duluth, MN 55802) V.1-1959- CODEN Reference: 18.185,1971 Goldenthal El. 1971. A compilation of LD50 values in newborn and adult animals. Toxicology and Applied Pharamacology 18:185-207 | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|--------------------|--|--|---|---|--|--| | Chloral hydrate | 479 | 479 | +/- 42
(S.E.) | Miller and Tainter
(1944) | Charles River CD
and Sprague-
Dawley rat strains;
> 100 g; adult | NA | oral intubation;
up to 50 mL/kg | NA | rats observed for 7 days; observed up to 14 days when heavy metals or other compounds that produce latent death were investigated | fasted overnight | NA | Yeary RA, Benish RA, Finkelstein M. 1966. Acute Toxicity of Drugs in
Newborn Animals. Journal of Pediatrics 69 (4):663-667.
Dept. of Veterinary Preventive Medicine, Ohio State University,
Columbus, OH | | Chloral hydrate | 479 | 500 | NA | NA | NA | rat | oral | aqueous solution or
suspension | produced degree of CNS depression | NA | NA | Finnegan JK, Larson PS, Haag HB, Page SG Jr. 1951. March. Sedative
and toxic effects of several chloral derivatives. Federation Proceedings v.
10:294. Medical College of Virginia, Richmond, VA | | Chloral hydrate | 479 | 800 | NA | graphically | white rats; 125-250 g | male and
female | oral;stomach
tube | single dose; 4% solutions in
distilled water; dose is
mg/kg, rats per dose: 700-25;
800-34; 900-22; 1000-32;
1100-24 | acute toxicity same for male and female; | fasted for 16 hour; 137 rats used; first
report for chloral hydrate LD50 | NA | Adams WL. 1943. The comparative toxicity if chloral alcoholate and chloral hydrate. J Pharm Exp Ther 78:340-345. Union University, Albany, NY | | Chloral hydrate | 479 | 863 | 622.9 - 832.1 | Bliss-Probit method | Sprague-Dawley
rats; 5 weeks | male | oral gavage | dissolved in saline; range
(mg/kg) of doses 417, 583,
816, 1143, 1600 | rats observed at 6 hours after dosing and a once a day for 1 - 2 weeks; most rats found dead within 3 days; 29 of 50 rats died; toxic symptoms: sleep to coma | animals acclimated to environment for 1 week before testing; 5 groups of 10 rats each; fasted 16 hours before dosing; 100% mortality = 1600 mg/kg; 0% mortality = 417 mg/kg | Wako Pure
Chemicals
Co. | Kitagawa H, Saito H, Sugimoto T, Yanaura S, Kitagawa H, Hosokawa T, Sakamoto K. 1982. Effects of diiospropyl-1,3-dithiol-2-ylidene malonate (NKK-105) on acute toxicity of various drugs and heavy metals. J Toxicol Sci 7(2):123-34. Chiba University: Hoshi College of Pharmacy; Showa University—Japan | | Chloramphenicol | 2500 | 692.9 | -/+ 70
(SEM) | Bliss (1938) | Harlan rats; < 4
days; 6-9 g | NA | intragastric | cmpd suspended in 4%
acacia saline solution; 2%
solution administered; 400,
500, 620, 800 mg/kg doses | observed for 7 days; death within 24 h; 400 mg/kg-0/5, 500 mg/kg-0/5, 620 mg/kg-3/5, 800 mg/kg-3/5 | NA | NA | Worth HM, Kachman C, Anderson RC. 1963. Inartistric injection for toxicity studies with newborn rats. Toxic Appl Pharmac 5:719-727.
Eli Lilly and Company. Indianapolis, IN | | Chloramphenicol | 2500 | 1040 | 776 - 1394 | NA | MJ rats; 1-2 days | NA | oral | NA | NA | information from: drug applications
from pharmaceutical manufacturers, the
literature, and FDA labs | NA | Goldenthal El. 1971. A compilation of LD50 values in newborn and adult animals. Toxicology and Applied Pharamacology. 18. Pp. 185 - 207. Bureau of Drugs, Food and Drug Administration, Dept. of Health, Education, and Welfare, Rockville, MD. | | Chloramphenicol | 2500 | 2188 | NA | Bliss (1938) | Harlan rats; 30-40
g; 21-25 days;
weanling | NA | gavage | cmpd suspended in 4%
acacia saline solution; 20%
solution administ; 1800,
2500, 3300 mg/kg doses | observed for 7 days; death within 3 days;
1800 mg/kg-0/5, 2500 mg/kg-4/5, 3300
mg/kg-5/5 | NA |
NA | Worth HM, Kachman C, Anderson RC. 1963. Inartistric injection for toxicity studies with newborn rats. Toxic Appl Pharmac 5:719-727.
Eli Lilly and Company, Indianapolis, IN | | Chloramphenicol | 2500 | 2500 | NA | NA | albino rats | NA | oral | NA | NA | reference paper in Italian; 1983/84
RTECS used the same reference but RC
had a different LD50 and ZEBET did
not provide the reference) | NA | RTECS REFERENCE CODEN: FRPSAX Bibliographic Data: Farmaco, Edizione Scientifica. (Casella Postale 227, 27100 Pavia, Italy) 18-43 1953-88 For publisher information, see FRMCE8 CODEN Reference: 10,3,1955 Almirante L. Caprio L, de Cameri I, Defranceschi A, Zamboni V. 1955. Studi sul cloroamfenicolo: (1) nuove sintesi della d-treo-2-dichlorometil-4 [(4'-nitrofeni))Ossimetil () Ossazolina (2) E dati sur potere antibiotico della stessa Farmaco. Edizione Scientifica 10(1)-3-13 | | Chloramphenicol | 2500 | 3400 | 2252 - 5139 | NA | MJ rats; adult | NA | oral | NA | NA | information from: drug applications from pharmaceutical manufacturers, the literature, and FDA labs | NA | Goldenthal EI. 1971. A compilation of LD50 values in newborn and adult animals. Toxicology and Applied Pharamacology 18:185-207. Bureau of Drugs, Food and Drug Administration, Dept. of Health, Education, and Welfare, Rockville, MD. This value used by RC (1977 RTECS). | | Chloramphenicol | 2500 | 5000 | NA | NA | Harlan Wistar rats | NA | oral | NA | NA | information from: drug applications
from pharmaceutical manufacturers, the
literature, and FDA labs | NA | Goldenthal El. 1971. A compilation of LD50 values in newborn and adult animals. Toxicology and Applied Pharamacology 18:185-207. Bureau of Drugs, Food and Drug Administration, Dept. of Health, Education, and Welfare. Rockville. MD. | | Chloramphenicol | 2500 | > 5000 | NA | Bliss (1938) method | Harlan rats; 150 g;
adult | NA | gavage | cmpd suspended in 4%
acacia saline solution; 30%
solution administered; 5000
mg/kg dose | observed for either 7 or 14 days; 10 rats
used; 2 dead; death on 1st day | NA | NA | Worth HM, Kachman C, Anderson RC. 1963. Inartistric injection for toxicity studies with newborn rats. Toxic Appl Pharmae 5:719-727.
Eli Lilly and Company, Indianapolis, IN | | Citric acid | 3000 | 3000 | NA | approximative | THOM (SPF) rats;
151-213 g; 48 days-
males; 62 days-
female | male and
female | oral gavage | 2500 - 5000mg/kg doses;
cmpd in
hydroxyethylcellulose | NA | 32 male and 32 female rats; 64 rats used; performed under GLPs | NA | RTECS REFERENCE CODEN: OYYAA2 Bibliographic Data: Oyo Yakuri, Pharmacometrics. (Oyo Yakuri Kenkyukai, CPO Box 180, Sendai 980-91, Japan) V.1-1967-CODEN Reference: 43,561,1992 Schneider PM, Bauer A, Eckenfels C, Hohbach L, Lutzen H, Puschner R, Serbedija J, Wiegleb P, Lehmann H. 1992. Acute, subacute and chronic toxicity studies of pimobendan in laboratory animals. Oyo Yakuri/Pharmacometrics 430:7561-578. | | Citric acid | 3000 | 11700 | 10080 - 13570
(95% CL) | Litchfield and
Wilcoxon method | SD-JCL rats; 110-
140 g; 5 weeks | male | oral | 2 mL/100 g bw | observed for 7 days; stimulation within several minutes, then ataxia and prostration at 50 minutes; mydriasis, decreased heart rate and respiration; death at 12500 and 18000 mg/kg in 20-180 minutes by resp. failure; 1 rat at 10420 mg/kg died at 20 hours; autopsy showed hemorrage of gastric mucosa | 6 rats/dose; number of doses not
reported | TAKEDA-
citric acid
(refined
product
produced by
yeast
fermention of
paraffins) | Yokotani H, Usui T, Nakaguchi T, Kanabayashi T, Tanda M, Aramaki Y. 1971. Acute and subacute toxicological studies of TAKEDA-citric acid in mice and rats. J Takeda Res Lab 30(1):25-31. | | Colchicine | no rat oral
data from
RTECS | 5.886
(mouse) | 3.901 - 7.508 | NA | B6D2F1 (BDF1)
mice | NA | Oral | in saline | NA | Mice fasted prior to dosing | NA | RTECS REFERENCE—MOUSE ORAL CODEN: NCISP* Bibliographic Data: National Cancer Institute Screening Program Data Summary, Developmental Therapeutics Program. (Bethesda, MD 20205) CODEN Reference: JAN1986. | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |--------------------------------|--|--|--|--|---|--------------------|--|--|---|--|---|---| | Colchicine | no rat oral
data from
RTECS | 18
(mouse) | NA | Lorke (1983) | MS/Ae mice from
Hitachi Medical
Laboratories
(Sanwa, Japan);
317-346 g: 7 weeks | male | oral | 1.0, 10.0, 14.0, 22.5, 37.5,
60.0, 100.0 mg/kg in
physiological saline | Dose and Deaths: 1.0 - 0/3; 10.0 - 0/3; 14.0 - 0/1; 22.5 -1/1; 37.5 - 1/1; 60.0 - 1/1;100.0 - 3/3 | 13 mice used; acclimated for 1 week before test | Wako Pure
Chemical
Industries
Ltd. (Osaka,
Japan) | Asano N, Morita T, Watanabe Y. 1989. Micronucleus test with colchicine given by intraperitoneal injection and oral gavage. Mutat Res 223:391-394. | | Colchicine | no rat oral
data from
RTECS | 29 (mouse) | NA | Lorke (1983) | CD-1 mice from
Charles River Japan
Inc (Hino, Japan);
312-382 g; 7 weeks | male | oral | 1.0, 10.0, 14.0, 22.5, 37.5,
60.0, 100.0 mg/kg in
physiological saline | Dose and Deaths: 1.0 - 0/3; 10.0 - 0/3; 14.0 - 0/1; 22.5 - 0/1; 37.5 - 1/1; 60.0 - 1/1; 100.0 - 3/3 | 13 mice used; acclimated for 1 week
before test | Wako Pure
Chemical
Industries
Ltd. (Osaka,
Japan) | Asano N, Morita T, Watanabe Y. 1989. Micronucleus test with colchicine given by intraperitoneal injection and oral gavage. Mutat Res 223:391-394. | | Cupric sulfate
pentahydrate | 300 | 236.2 | NA | NA | Sprague-Dawley rats | NA | oral | 200, 500, 1000, 2000 | NA | NA | T.C. copper
sulfate
powdered
(50% in
water) | U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox
Oneliners; EPA Chem. Code: 024401; Core Grade/Tox Record No.
002705 | | Cupric sulfate
pentahydrate | 300 | 300 | NA | NA | rats | NA | oral | NA | NA | value assumed to be from Lehman 1951 | NA | RTECS REFERENCE CODEN: 85ARAE Bibliographic Data: "Agricultural Chemicals," Thomson, W.T., 4 vols., Fresno, CA, Thomson Publications, 1976/77 revision CODEN Reference: 2, 182, 1977. | | Cupric sulfate
pentahydrate | 300 | 300 | NA | NA | rats | NA | oral; stomach
tube | NA | violent retching, muscular spasms and collapse; onset within minutes | information from the laboratories of
Division of Pharmacology, U.S. FDA.;
fasted animals | NA | Lehman AJ. 1951. Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides. Quarterly Bulletine (Association of Food and Drug Officials of the United States). v15:22 - 133. U.S.FDA RTECS SOURCE | | Cupric sulfate pentahydrate | 300 | 450 | 346 - 585
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
rats; 155-175 g | female | oral gavage | single dose; 9 dose levels
from 100 - 5000mg/kg | animals observed daily and survivors killed
14 days post-dose; all deaths within first
week of dosing; weight loss, lethargy and
death; dose (mg/kg), no dead/no dosed: 100
0/5; 200 - 0/5; 300 - 3/10; 500 - 0/5; 625 -
0/10: 750 - 4/5: 5000 - 5/6 | tested under GLPs; groups of rats (5/sex/dose group) were administered vehicle (10 mL/kg) or test article; 45 animals used | powder 99%
pure | Deenihan MJ.1987; Fine 20 Copper Sulfate Pentahydrate - Acute Toxicology Testing: (A) Acute Oral Toxicity, Northview Pacific laboratories, Inc. U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No.433962-01A; EPA Chem. Code: 024401; Core Grade/Tox Record No. acceptable; 011521; Apr. 20, 1995 | | Cupric sulfate
pentahydrate | 300 | 472.5 | NA | NA | rat | NA | oral | NA | NA | NA | copper sulfate
(powder) | WARF Institute, Inc.; WARF No. 5032161; Jan. 1, 1975; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No.00058839; EPA Chem. Code: 024401; Core Grade/Tox Record No. supplementary 004457 | | Cupric sulfate pentahydrate | 300 | 790 | 416 - 1501
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
rats; 225-250 g | male | oral gavage | single dose; 9 dose levels
from 100 - 5000 mg/kg | animals observed daily and survivors
killed
14 days post-dose; all deaths within first
week of dosing; weight loss, lethargy and
death; dose (mg/kg), no dead/no dosed: 100
0/5; 300 - 2/5; 750 - 1/5; 1000 - 3/5; 1250 -
2/5; 5000 - 5/5 | tested under GLPs; groups of rats (5/sex/dose group) were administered vehicle (10 ml/kg) or test article; 30 animals used | powder 99%
pure | Deenihan MJ.1987; Fine 20 Copper Sulfate Pentahydrate - Acute Toxicology Testing: (A) Acute Oral Toxicity, Northview Pacific laboratories, Inc. U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No.433962-01A; EPA Chem. Code: 024401; Core Grade/Tox Record No. acceptable; 011521; Apr. 20, 1995 | | Cupric sulfate pentahydrate | 300 | 960 | 710 - 1300
(these limits are +/-
1.96 S.D.) | Thompson method;
Weil tables | Carworth-Wistar
rats; 90-120 g; 4-5
weeks | male | oral gastric intubation | in aqueous solution;
concentration intubated = 50
mg/mL; dosages arranged in
a logarithmic series differing
by a factor of 2 | LD50 based on mortalities during a 14 day period | non-fasted; groups of 5 rats; single oral dose toxicity | reagent grade | Smyth HF Jr, Carpenter CP, Weil CS, Pozzani UC, Striegel JA, Nycum JS. 1969. Range-finding toxicity data: List VII. Am Ind Hyg Assoc J 30:470-476. Carnegie-Mellon University, Pittsburgh, Pt (LD50 value)—Smyth HF Jr, Carpenter CP, Weil CS, Pozzani UC, Striegel JA. 1962. Range-finding toxicity data: List VI. Am Ind Hyg Assoc J 23:95-107. Mellon Institute of Industrial Research, Pittsburg, Pt (experimental narameters). | | Cupric sulfate pentahydrate | 300 | 1570 | 1030 - 2400 | NA | rat | NA | oral | NA | NA | low purity (20%) | copper sulfate
pentahydrate
20% (Odor
inhibitor/bact
ericide) | Hazleton Laboratories America, Inc.; HLA B1100274; Feb 27, 1989; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 41043001; EPA Chem. Code: 024401; Core Grade/Tox Record No. Guideline 009092; Feb. 5, 1992 | | Cupric sulfate
pentahydrate | 300 | 2300 | 1150 - 3390 | NA | rat | female | oral | NA | NA | low purity (11%) | copper sulfate | BASF; 82/168; Aug. 11, 1986; U.S. EPA, Office of Pesticide Programs;
Health Effects Division; Tox Oneliners; MRID No. 00149179; EPA
Chem. Code: 024401; Core Grade/Tox Record No. Guideline 006197 | | Cupric sulfate pentahydrate | 300 | 2530 | 2010 - 3170 | NA | rat | male and
female | oral | NA | NA | low purity (11%) | copper sulfate | BASF; \$2/168; Aug. 11, 1986; U.S. EPA, Office of Pesticide Programs;
Health Effects Division; Tox Oneliners; MRID No. 00149179; EPA
Chem. Code: 024401; Core Grade/Tox Record No. Guideline 006197 | | Cupric sulfate pentahydrate | 300 | 2610 | 1890 - 4140 | NA | rat | male | oral | NA | NA | low purity (11%) | copper sulfate | BASF; 82/168; Aug. 11, 1986; U.S. EPA, Office of Pesticide Programs;
Health Effects Division; Tox Oneliners; MRID No. 00149179; EPA
Chem. Code: 024401; Core Grade/Tox Record No. Guideline 006197 | | Cupric sulfate pentahydrate | 300 | LD50 > 0.5mL/kg < 2.0 mL/kg | NA | NA | Sprague-Dawley rats | male | oral | 0.5, 2.0, 5.0 mL/kg | no toxic signs | NA | Cutrine (28%
copper
sulfate) | WARF Institute, Inc.; WARF No. 1052198; Mar. 20, 1978; U.S. EPA,
Office of Pesticide Programs; Health Effects Division; Tox Oneliners;
MRID No. 00157309; EPA Chem. Code: 024401; Core Grade/Tox Record
No. supplementary 002707 | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|--------|--|--|--|--|---|--| | Cycloheximide | 2 | 1
(calculated by
NICEATM) | NA | NA | rats | NA | oral; stomach
tube | aqueous solutions or
suspensions; 0.5, 0.75, 1.0,
1.5, 2.0, 2.5, 5.0, 7.5, 10, 15,
2.5, 5.0, 7.5, 100, 150, 200
mg/kg dose range | rats at higher doses had bloody urine and profuse watery feces | 2 rats/dose; 32 rats used; 27/32 rats/dose; 75-200 mg/kg: all dead within 5 hour; 10-50 mg/kg: all dead overnight; 7.5 mg/kg: 1 dead overnight, other at 26 hour; 5.0 mg/kg: 1 dead overnight, other at 24 hour; 5.0 mg/kg: 1 dead overnight, other at 24 hour; 2.0 mg/kg: all dead overnight and 23 hour; 1.5 mg/kg: all dead at 25 hour; 1.0 mg/kg: 1 m | | Traub R, DeWitt JB, Welch JF, Newman DJ. 1950. Toxicity and repellency to rats of actidione. J Am Pharm Assoc (Sci. Ed.) 39(10):552 - 555. Army Medical Department Research and Graduate School, Washington, D.C. | | Cycloheximide | 2 | 1.8 | NA | NA | rats | NA | oral | NA | NA | NA | NA | RTECS REFERENCE CODEN: UPJOH* Bibliographic Data: "Compounds Available for Fundamental Research, Volume II-6, Antibiotics, A Program of Upjohn Company Research Laboratory." (Kalamazoo, MI 49001) CODEN Reference; 2(6),-1971. | | Cycloheximide | 2 | 2.5 | NA | NA | rats | NA | oral | NA | excessive salivation, diarrhea, nervousness, depression | NA | Upjohn
Company | Ford JH, Klomparens W. 1960. Cycloheximide (Acti-dione) and its non agricultural uses. Antibiotics and Chemotherapy 10:682 - 687.
The Upjohn Co., Kalamazoo, MI | | Dibutyl phthalate | 7499 | 7499 | 7072 - 8006
(95% CL) | NA | rats | NA | oral | NA | NA | NA | NA | RTECS REFERENCE CODEN: WDZAEK Bibliographic Data:
Weisheng Dultxue Zashi. Journal of Health Toxicology. (Weisheng
Dultxue Zashi Bianjibu, Dongdaqiao. Chaoyang Menwai, Beijing, Peop.
Ren. China VI-1987 CODEN Reference: 5.264,1991. | | Dibutyl phthalate | 7499 | 8000 | NA | NA | Sprague-Dawley
rats; 60-75 g; 5-6
weeks | male | oral | single undiluted doses; 4000,
8000, 16000, 32000 mg/kg
doses | 7 day observation | 4000 mg/kg - 0/3 dead; 8000 mg/kg -
4/9 dead; 16000 mg/kg - 6/6 dead;
32000 mg/kg - 6/6 dead; 24 rats used | NA | Smith CC. 1953. Toxicity of butyl stearate, dibutyl sebacate, dibutyl phthalate, and methoxyyethyl oleate. Arch Ind Hyg 7:310-318. | | Dibutyl phthalate | 7499 | 8380 | 6860 - 10230 | NA | Sherman strain rats;
120 g | NA | NA | dosage series when
expressed in /kg constitutes
the antilogarithms of 1.0,
1.1. 1.2, etc | NA | NA | NA | Smyth HF, Carpenter CP. 1948. Further experience with the range finding test in the industrial toxicology laboratory. J Ind Hyg Toxicol 30:63-68.
Melon Institute, Pittsburgh, PA | | Dibutyl phthalate | 7499 | 12436
(11.9 mL/kg) | NA | Karber's method | white rats; 60-75 g;
6 weeks | NA | oral | NA | degenerative liver changes noted | reference is untranslated Russian with
English abstract; NICEATM converted
11.9 mL/kg LD50 to mg/kg using
provided density
of 1.045 g/mL | NA | Homrowski S, Nikonorow M. 1959. Toksycznosc ostra ftalanu dwubutylu
oraz ftalanu dwu-2-etyloheksylu produkcji krajowej. Roczniki
Panstwowego Zakladu Higieny 10:321-327. | | Dichlorvos (DDVP) | 17 | 17 | NA | NA | rats | NA | oral | NA | NA | unknown primary reference | NA | RTECS REFERENCE CODEN: JPIFAN Bibliographic Data: Japan
Pesticide Information. (Japan Plant Protection Assoc., 1-43-11,
Komagome, Toshima-ku, Tokyo 170, Japan) No.1-61, 1969-92. For
publisher information. see AGJAEP. CODEN Reference: (13), 36, 1972. | | Dichlorvos (DDVP) | 17 | 50 | NA | Litchfield and
Wilcoxon method
(1949) | CFY strain rats;
120+ g; adult | female | oral | NA | NA | NA | 93% pure;
Ciba-Geigy,
Switzerland | Desi I. 1983. Neurotoxicological investigaton of pesticides in animal experiments. Neurobehav Toxicol 5:503-515. National Institute of Hygiene, Hungary | | Dichlorvos (DDVP) | 17 | 54
(calculated from
negative log in
mol/kg [3.61]) | 24 - 111
(CL) | Litchfield and
Wilcoxon method
(1949) | Wistar rats; 150 g | female | intragastric-
ally (metal
tube) | ethanol: water 1:4 solution
used as solvent; 2 mL/kg
dosage; | observed for 72 hours; decreased body weight | 30 rats tested (5 groups of 6 rats) | 95% pure | Gajewski D, Katkiewicz M. 1981. Activity of certain enzymes and histomorphological changes in subacute intoxication of rats with selected organophosphates. Acta Physiol Pol 32(5):507-520. **Agicultural Academy (and others), Warsaw, Poland (Games 1B. 1990. The acute toxicity of pesticides to rats. Toxicol Appl | | Dichlorvos (DDVP) | 17 | 56 | 48 - 65
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min.wt.: female =
200 g; min.age of
90 days | female | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival = died within 1 hour | 80 rats tested; LD50 value from Durham et al. 1957 | technical
grade | Games 1B. 1960. The acute toxicity of pesticides to rats. Toxicol Appl Pharmacol 2:88-99. U.S. Dept. of Health, Education, and Welfare, Savannah, G.A Mattson AM, Spillane JT, Pearce GW. 1955. Dimethyl 2,2-dichlorvinyl phosphate (DDVP), an organic phosphorous compound highly toxic to insects. J Agr Food Chem 3:319-321. Communicable Disease Center, Savannah, G.4 | | Dichlorvos (DDVP) | 17 | 56 | 48 - 65
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman albino rats | female | oral; stomach
tube | dissolved in peanut oil;
dosage rate of 5ul/g; DDVP
concentration varied | bulging eyes, excessive lacrimation,
sialorthea, generalized muscle fasiculations,
tremors; killed rats dead within 1 hour; all
survivors completely recovered within 24
hours | NA | technical
grade,
90%DDVP | Durham WF, Gaines TB, McCauley RH, Sedlak VA, Mattson MA, Hayes WJ. 1957. Studies on the toxicity of 0,0-dimethyl-2,2-dichlorovinyl phosphate (DDVP). AMA Arch Ind Health 15:340-349. U.S. Dept. of Health, Education and Welfare, Savannah, GA | | Dichlorvos (DDVP) | 17 | 68 | 59 - 79 (95%
CL) | Litchfield and
Wilcoxon method
(1949) | Sherman albino rats | female | oral; stomach
tube | dissolved in peanut oil;
dosage rate of 5uL/g; DDVP
concentration varied | bulging eyes, excessive lacrimation,
sialorthea, generalized muscle fasiculations,
tremors; killed rats dead within I hour, all
survivors completely recovered within 24
hours | | 99% pure
DDVP | Durham WF, Gaines TB, McCauley RH, Sedlak VA, Mattson MA, Hayes WJ. 1957. Studies on the toxicity of 0,0-dimethyl-2,2-dichlorovinyl phosphate (DDVP). AMA Arch Ind Health 15:340-349. U.S. Dept. of Health, Education and Welfare, Savannah, GA | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|--|--|---|--|---|---|--| | Dichlorvos (DDVP) | 17 | 80 | 62 - 104
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min. wt.: male =
175 g; min. age of
90 days | male | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival = died within 1 hour | 59 rats tested; LD50 value from reseach paper of Durham et al. 1957 | | Gaines TB. 1960. The acute toxicity of pesticides to rats. Toxicol Appl Pharmacol 2:88-99. U.S. Dept. of Health, Education, and Welfare, Savannah, GA Mattson AM, Spillane JT, Pearce GW. 1955. Dimethyl 2,2-dichlorvinyl phosphate (DDVP), an organic phosphorous compound highly toxic to insects. J Agr Food Chem 3:319-321. Communicable Disease Center, Savannah, GA | | Dichlorvos (DDVP) | 17 | 80 | NA | Litchfield and
Wilcoxon method
(1949) | CFY strain rats;
120+ g; adult | male | oral | NA | NA | NA | 93% pure;
Ciba-Geigy,
Switzerland | Desi I. 1983. Neurotoxicological investigaton of pesticides in animal experiments. Neurobehav Toxicol 5:503-515. National Institute of Hygiene, Hungary | | Dichlorvos (DDVP) | 17 | 80 | 62 - 104
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman albino rats | male | oral; stomach
tube | dissolved in peanut oil;
dosage rate of 5 ul/g; DDVP
concentration varied | bulging eyes, excessive lacrimation,
sialorthea, generalized muscle fasiculations,
tremors; killed rats dead within 1 hour; all
survivors completely recovered within 24
hours | NA | technical
grade,
90%DDVP | Durham WF, Gaines TB, McCauley RH, Sedlak VA, Mattson MA, Hayes WJ. 1957. Studies on the toxicity of 0,0-dimethyl-2,2-dichlorovinyl phosphate (DDPP). AMA Arch Ind Health 15:440-439. U.S. Dept. of Health, Education and Welfare, Savannah, GA | | Dichlorvos (DDVP) | 17 | 80 | 71 - 90
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman albino rats | female | oral; stomach
tube | dissolved in peanut oil;
dosage rate of 5 ul/g; DDVP
concentration varied | bulging eyes, excessive lacrimation,
sialorthea, generalized muscle fasiculations,
tremors; killed rats dead within 1 hour; all
survivors completely recovered within 24
hours | NA | technical
grade,
90%DDVP | Durham WF, Gaines TB, McCauley RH, Sedlak VA, Mattson MA, Hayes WJ. 1957. Studies on the toxicity of 0,0-dimethyl-2,2-dichlorovinyl phosphate (DDPP). AMA Arch Ind Health 15:440-439. U.S. Dept. of Health, Education and Welfare, Savannah, GA | | Dichlorvos (DDVP) | 17 | 97.5 | 88.6 - 107 (95%
CL slope =
1.24 [1.15 -
1.34]) | Litchfield and
Wilcoxon method
(1949) | Fischer 344 rats; 7
weeks | male | oral gavage | dissolved in olive oil; 5
mL/kg dosing solution; 4 -5
dosages | 24 hour observation; anti-cholinesterase
signs of salivation, fasiculation, lacrimation,
tremors, irregular respiration, prostration; all
deaths observed between 2 - 24 hours | aclimated for 1 week before dosing; 5 - 10 animals per each dosage | 98.7% pure;
Nippon
Chemical
Industrial
Company,
Ltd. | Ikeda T, Kojima T, Yoshida M, Takahashi H, Tsuda S, Shirasu Y. 1990.
Pretreatment of rats with an organophosphorous insecticide,
chlorfenvinphos, protects against subsequent challenge with the same
compound. Fundam Appl Toxicol 14(3):560-567.
Mitsukaido Laboratories, Institute of Environmental Toxicology, Japan | | Diethyl phthalate | 8600 | > 5590 (reported
as > 5.0 mL/kg;
specific density =
1.118) | 95% CL (where possible); | Litchfield and
Wilcoxon method
(1949) | Wistar albino rats;
139-164 g | male and
female | oral; gavage | 0.5, 1, 2, 5 mL/kg; single dose | observed at 1, 3, 6, and 24 hours after
dosing; then observed daily for 14 days; 2
rats dead | 8 groups of 10 rats (5M, 5F); 80 rats
used; fasted overnight | NA | data from EPA TSCATS database; ORAL LD50 TEST IN RATS OF
DIETHYL PHTHALATE WITH COVER LETTER DATED 05/09/94
(SANITIZED) (1978) EPA Document No. 86-940000887S Fiche No.
OTS0557297; Consumer Product Testing, Fairfield, NJ | | Diethyl phthalate | 8600 | 8600 | 7840 - 9890 | NA | rats | NA | oral | NA | NA | NA | NA | RIECS REFERENCE: CODEN: GIPZAB
Bioliographic Data:
Gigiena Truda i Professional'nye Zabolevaniya. Labor Hygiene and
Occupational Diseases. (V/O Meshdunarodnaya Kniga, 113095 Moscow,
USSR) VI-36, 1957-1992. For publisher information, see MTPEEI
CODEN Reference: 24(3), 25, 1980.
Timofeevshaia LA, Ivanova NI, Balinina ES. 1980. Toxicology of O-
phthalate acid esters and hygiene reglamentation. Gigiena Truda i
Professional Proce Zabolevaniva 24(3), 25-27. | | Diethyl phthalate | 8600 | 10100 | 8920 - 11280 | NA | rats; 220 +/- 40 g | NA | oral;
intragastric | NA | NA | (source of information not provided) | NA | Limerov NF, Sanotsky IV, Sidorov KK. 1982. Toxicometric Parameters of
Industrial Toxic Chemicals under Single Exposure. International Register
of Potentially Toxic Chemicals (IRPTC). United Nations Environment
Programme (UNEP). Centre of International Projects, GKNT. Moscow,
Russia. | | Digoxin | 28.3 | 28.27 | 24.85 - 32.17
(limits of error
[P=0.95]) | Probit method | rats; 250-310 g | male and
female
(equal
numbers) | oral | NA | mortality rate computed 7 days after administration | 3 or 4 groups of 10; 30 - 40 rats used;
fasted overnight | NA | RTECS REFERENCE CODEN: AIPTAK Bibliographic Data: Archives
Internationales de Pharmacodynamie et de Therapie. (Heymans Institute
of Pharmacology, DePintelaun 185, B-9000 Ghent, Belgium) V-4. 1898-
CODEN Reference: 164,47,1966. ——————————————————————————————————— | | Dimethylformamide | 2800 | 1425
(1.5 mL/kg;
converted to mg/kg
using density =
0.950) | 855 - 2565
(95% CL; 0.9 - 2.7
mL/kg; converted
to mg/kg using
density = 0.950) | Litchfield and
Wilcoxon method and
probit analysis | Sprague-Dawley
rats; 16-50 g; 14
days | male and
female | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; 6-12 rats of both sexes
used for studies; solvent used in
undiluted form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL. | | Dimethylformamide | 2800 | > 2000 | NA NA | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | male and
female | oral gavage | single dose | 14 day observation; toxicity symptoms:
Ptosis, posture, respiratory effects, lethargy,
abnormal gait, tremors, convulsions,
prostrate come; time to onset of signs;
duration of signs no signs reported; 0 rats
dead (average ner test) | 3 dose levels (5 male and 5 female
each); 30 rats used; OECD TG401
(1981) followed for experimental
procedures | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA,
Pelling D, Tomlinson NJ, Walker AP, 1990. Jul. The International
Validation Of A Fixed-Dose Procedure As An Alternative To The
Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | | | | | | | | | | 1 | | | | |-----------------------|-------------------------------|--|--|--|---|--------------------|--|--|---|---|--|---| | CHEMICAL ¹ | mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | | Dimethylformamide | 2800 | 2800 | NA | NA | rats | NA | oral | NA | NA | NA | NA | RTECS REFERENCE CODEN: ZEKBAI Bibliographic Data: Zeitschrift füer Krebsforschung. (Berlin, Fed. Rep. Ger) VI-75, 1903-71. For publisher information, see JCROD7. CODEN Reference: 69,103,1967 Druckery H, Preussmann R, Ivankovic S, Schmahl D. 1966. Organotrope carcinogene Wirkungen bei 65 verschiedenen N-Nitroso-Verbindungen an BD-Ratten. Zeitschrift für Krebsforschung 69:103-201. | | Dimethylformamide | 2800 | 3990
(4.2 mL/kg;
converted to mg/kg
using density =
0.950) | 2565 - 6270
(95% CL; 2.7 - 6.6
mL/kg; converted
to mg/kg using
density = 0.950) | | Sprague-Dawley
rats; 80-160 g;
young adult | male | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; groups of 6 rats used for
the studies; solvent used in undiluted
form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL. | | Dimethylformamide | 2800 | 5800 | +/- 1200 | NA | rats; 220 +/- 40 g | NA | oral;
intragastric | NA | NA | (source of information not provided) | NA | Izmerov NF, Sanotsky IV, Sidorov KK. 1982. Toxicometric Parameters of
Industrial Toxic Chemicals under Single Exposure. International Register
of Potentially Toxic Chemicals (IRPTC). United Nations Environment
Programme (UNEP). Centre of International Projects, GKNT. Moscow,
Russia. | | Dimethylformamide | 2800 | 6840
(7.2 mL/kg; sp.
density = 0.950;
convert LD50 to
mg/kg) | 5700 - 8170
(95% CL; 6.0 - 8.6
mL/kg; sp. density
is 0.950; convert
LD50 to mg/kg) | | Sprague-Dawley
rats; 300-470 g;
older adult | male | oral | solvent used in undiluted form | animals observed for a week after medication | form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL. | | Dimethylformamide | 2800 | 7000 | NA | based on assumption
that probit mortality vs
log dose has same
slope as similar
chemical | Sherman rats; 90-
120 g; 4-5 weeks | male | oral gastric
intubation | in aqueous solution; doses (in g/kg) differ by 1 log to bracket LD50, then refine LD50 with doses in a series of antilog 1.1, 1.3, 1.5, etc | LD50 based on mortalities during a 14 day period | 6 rats/dose at doses that differ by 1 log
to bracket LD50 (given 1 week apart);
then refined LD50 with 10 rats/dose in a
dose series of antilog 1.1, 1.3, 1.5, etc.;
assumed to use materials/methods of
Smyth & Carpenter (1944) except for
reported changes | reagent grade | Smyth HF Jr, Carpenter CP. 1948. Further experience with the range finding test in the industrial toxicology laboratory. J Ind Hyg Toxicol 30: 63-68. (LD50 value) Smyth HF Jr, Carpenter CP. 1944. The place of the range-finding test in the industrial toxicology laborotory. J Ind Hyg Toxicol 26:269-273. (most materials/methods) | | Dimethylformamide | 2800 | 7182
(7.6 mL/kg; sp.
density listed as
0.945; convert
LD50 to mg/kg) | 6804 - 7655
(95% CL; 7.2 - 8.1
mL/kg; sp. density
listed as 0.945;
convert LD50 to
mg/kg; slope = | Finney (1962) Probit
Analysis | Sprague-Dawley
SPF rats; 170-230 g | male and
female | oral; stomach
tube | diluted in 0.9% saline; 20 -
30 mL/kg dose | observed up to 7 days after administration; all deaths occurred within 24 hour | 10 animals per dose (5 male, 5 female) | pure DMF | Bartsch W, Sponer G, Dietmann K, Fuchs G. 1976. Acute toxicity of various solvents in the mouse and rat. LD50 of ethanol, diethylacetamide, dimethylformamide, dimethylsulfoxide, glycerine, N-methylpyrrolidone, polyethylene glycol 400, 1,2- propanediol and Tween 20. Arzneimittelforschung 26(8):1581-1583. | | Diquat dibromide | 231 | 231 | NA | NA | rats | NA | oral | NA | NA | assumed to be the value from Clark & Hurst 1970 | NA | RTECS REFERENCE CODEN: PEMNDP Bibliographic Data:
Pesticide Manual. (The British Crop Protection Council, 20 Bridport Rd.,
Thornton Heath CR4 7QG, UK) V.1- 1968- CODEN Reference:
9,316,1991. | | Diquat dibromide | 231 | 121 | 108 - 136
(95% CL; slope =
12.2) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats
(SPF); min. wt. =
200 g; min. age of
90 days | female | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed for at least 14 days after dosing or
until recovered from signs of toxicity | 40 rats used;
min. of 10 animals per group tested | technical
grade | Gaines TB, Linder RE. 1986. Acute toxicity of pesticides in adult and
weanling rats. Fundam Appl Toxicol 7(2):299-308. Health
Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC | | Diquat dibromide | 231 | 147 | 138 - 155
(95% CL; slope =
22.5) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats
(SPF); min. wt. =
175 g; min. age of
90 days | male | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed for at least 14 days after dosing or
until recovered from signs of toxicity | 40 rats used; min. of 10 animals per group tested | technical
grade | Gaines TB, Linder RE. 1986. Acute toxicity of pesticides in adult and weanling rats. Fundam Appl Toxicol 7(2):299-308. Health Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC | | Diquat dibromide | 231 | 231
(diquat ion per kg
bw) | 194 - 274
(95% CL) | Thompson (1947);
moving average
interpolation method | Alderly Park albino
rats (SPF); 180-200
g; young, mature | female | oral; stomach
tube | chemical dissolved in water
or physiological saline | observed for 14 days; lethargy, weight loss, respiratory difficulty | NA | 99% pure
diquat
dichloride or
diquat
dibromide | Clark DG, Hurst EW. 1970. The toxicity of diquat. Br J Ind Med
Jan;27(1):51-55. Imperial
Chemical Industries Limited, Cheshire, UK | | Disulfoton | 2.6 | 2.3 | 1.7 - 3.1
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min. wt. = 200 g;
min. age of 90 days | female | oral; stomach
tube | chemical in peanut oil;
0.005mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 3 days | 50 rats tested | technical
grade | Gaines TB. 1969. Acute toxicity of pesticides. Toxicol Appl Pharmacol 14(3): 515-34. U.S. Dept. of Health, Education, and Welfare, Atlanta, GA | | Disulfoton | 2.6 | 2.6 | NA | estimated by the
logarithm-probability
method | Sprague-Dawley
rats; 175 - 225 g | female | NA | dissolved in 10% ETOH,
90% propylene glycol;
strength of solutions adjusted
so that less than 0.3% bw
was administered to the rats | animals observed for 10 days; death or complete recovery occurred within this time; acute toxic dose symptoms typical of those produced by cholinergic organic phosphates; single doses produced effects resembling those resulting from excessive stimulation of the central nervous system, the patasympathetic nervous system and somatic motor nerves; after lethal doses death usually occurred within 48 hour | | Chemagro
Corp., New
York | Bombinski TJ, Dubois KP. 1958. Toxicity and mechanism of action of Disyston. AMA Arch Ind Health 17:192-199. | | CHEMICAL ¹ | mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OI
EXPOSURE | DOOL | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |------------------------|-----------------------------------|---|--|--|---|-----------------------------|---------------------------------|--|---|--|---|---| | Disulfoton | 2.6 | 2.6 | NA | NA | rats | female | oral | NA | NA | reference is a review article in Japanese;
this LD50 value is assumed to be from
Bombinski and Dubois 1958 | NA | RTECS REFERENCE CODEN: YKYUA6 Bibliographic Data:
Yakkyoku. Pharmacy: (Nanzando, 4-1-11, Yushima, Bunkyo-ku, Tokyo,
Japan) V.1-1950- CODEN Reference: 37,717,1986. | | Disulfoton | 2.6 | 3.2 | 3.0 - 3.3
(95% CL) | NA | Hindustan
Antibiotics strain
rats; adult | female | oral | 1 - 10 mg/kg doses; 6
different dose levels | acute 24 hour LD50 determination; percent
mortality given for different timepoints
within the 24 hour period; pretreatment of
rats reduced mortality in some cases | ovemight fasted; rats pretreated with one of the following: saline, oil, phenobarbital, 3-methyl-cholanthourene, nickel chloride, cobalt chloride, cycloheximide or ethylmorphine; reference doesn't adequately define which rats received what and if all data were used in LD50 determinations | NA | Pawar SS, Fawade MM. 1978. Alterations in the toxicity of thiodemeton due to the pretreatment of inducers, substrate, and inhibitors of mixed function oxidase system. Bull Environ Contam Toxicol 20:805-810.
Marathwada University, India | | Disulfoton | 2.6 | 6.8 | 5.9 - 7.8
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min. wt. = 175 g;
min age of 90 days | male | oral; stomach
tube | chemical in peanut oil;
0.005mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 2 days | 69 rats tested | technical
grade | Gaines TB. 1969. Acute toxicity of pesticides. Toxicol. Appl. Pharmacol. 14(3):515-34. U.S. Dept. of Health, Education, and Welfare, Atlanta, GA | | Disulfoton | 2.6 | 7.2 | 7.0 - 7.3
(95% CL) | NA | Hindustan
Antibiotics strain
rats; adult | male | oral | 1 - 10 mg/kg doses; 6
different dose levels | acute 24 hour LD50 determination; percent
mortality given for different timepoints
within the 24 hour period; pretreatment of
rats reduced mortality in some cases | overnight fasted; rats pretreated with one of the following: saline, oil, phenobarbital, 3-methyl-cholanthourene, nickel chloride, cobalt chloride, cycloheximide or ethylmorphine; reference doesn't define which rats received what and if all data were used in LDS0 determinations. | NA | Pawar SS, Fawade MM. 1978. Alterations in the toxicity of thiodemeton due to the pretreatment of inducers, substrate, and inhibitors of mixed function oxidase system. Bull Environ Contam Toxicol 20:805-810.
Marathwada University, India | | Disulfoton | 2.6 | 12.6 | NA | estimated by the logarithm-probability method | Sprague-Dawley
rats; 175-225 g | male | NA | dissolved in 10% ETOH,
90% propylene glycol;
strength of solutions adjusted
so that less than 0.3% bw
was administered to the rats | animals observed for 10 days; death or
complete recovery occurred within this time;
acute toxic dose symptoms typical of those
produced by cholinergic organic phosphates;
single doses produced effects resembling
those resulting from excessive stimulation of
the central nervous system, the
patasympathetic nervous system and somatic
motor nerves; after lethal doses death usually
occurred within 48 bour. | 39 rats used | Chemagro
Corp., New
York | Bombinski TJ, Dubois KP. 1958. Toxicity and mechanism of action of Di-
syston. AMA Arch Ind Health 17:192-199. | | Endosulfan | 18 | 18 | NA assumed to be the values from Gaines 1969 | NA | RTECS REFERENCE CODEN: ARSIM* Bibliographic Data: Agricultural Research Service, USDA Information Memorandum. (Beltsville, MD 20705) CODEN Reference; 20,9,1966. | | Endosulfan | 18 | 18 | 15 - 21
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min wt. = 200 g;
min age of 90 days | female | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 2 days | 60 rats tested | technical
grade | Gaines TB. 1969. Acute toxicity of pesticides. Toxicol Appl Pharmacol 14(3):515-34. U.S. Dept. of Health, Education, and Welfare, Atlanta, GA | | Endosulfan | 18 | 43 | 41 - 46
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min wt. = 175 g;
min age of 90 days | male | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 5 days | 70 rats tested | technical
grade | Gaines TB. 1969. Acute toxicity of pesticides. Toxicol Appl Pharmacol 14(3):515-34. U.S. Dept. of Health, Education, and Welfare, Atlanta, GA | | Epinephrine bitartrate | no rat oral
data from
RTECS | (mouse - oral) | +/- 1 | NA | NA | NA | NA | NA | observed for 5 days | NA | NA | RTECS REFERENCE—MOUSE ORAL CODEN:
APTOA6 Bibliographic Data: Acta Pharmacologica et Toxicologica. (Copenhagen, Denmark) V.1-59, 1945-86. For publisher information, see PHTOEH CODEN Reference; 31,49,1972. | | Ethanol | 7060 | 6162
(7.8 mL/kg;
converted to mg/kg
using density of
0.790) | 4977 - 7663
(95% CL; 6.3 - 9.7
mL/kg) | Litchfield and
Wilcoxon method and
probit analysis | Sprague-Dawley
rats; (16-50 g); 14
days | male and
female | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; 6-12 rats of both sexes
used for studies; solvent used in
undiluted form | analytical
grade meeting
A.C.S.
specifications | Kimurn ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL | | Ethanol | 7060 | 7060 | 6670 - 7460
(95% CL) | moving average of
Weil (1952) or
Litchfield and
Wilcoxon method
(1949) | Wistar albino rats;
old adult; 11-12
months | male | oral | dose interval 1.1; ethanol concentration of 40% w/v | acute (24 hour) toxicity; respiratory failure | fasted overnight; 6 - 8 grouped of 10 rats each | NA | RTECS REFERENCE CODEN: TXAPA9 Bibliographic Data: Toxicology and Applied Pharmacology. (Academic Press, Inc., I.E. First St., Duhuth, Mr. SS802) V.I. 1959: CODEN Reference: 16,718,1970. — Wiberg GS, Trenholm HL, Coldwell BB. 1970. Increased ethanol toxicity in old rats: changes in LD50, in vivo and in vitro metabolism, and liver alcohol dehydrogenase activity. Toxicol Appl Pharmacol May 16(3):718-727. Dept. of National Health and Welfare, Ottawa, Canada | | Ethanol | 7060 | 7400 | NA | NA | rats; 150-250 g; 70-
100 days | male
(predominat
ely) | oral | NA | observed for 6 days | 18 hour fasting before dosing | NA | Welch H, Slocum GG. 1943. Relation of length of carbon chain to the
primary and functional toxicities of alcohols. J Lab Chem Med 28:1440-
1445. U.S. FDA, Washington, D.C. | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|---|---|---|---|---------------------------------|--|--|---|--|---|---| | Ethanol | 7060 | 10600 | 10000 - 11200
(95% CL) | Litchfield and
Wilcoxon method
(1949) or moving
average of Weil (1952) | Wistar albino rats;
young adult; 100
days | male | oral | dose interval 1.1; ethanol concentration of 40% w/v | acute (24 hour) toxicity; respiratory failure | fasted overnight; 6 - 8 grouped of 10 rats each | NA | Wiberg GS, Trenholm HL, Coldwell BB. 1970. Increased ethanol toxicity in old rats: changes in LD50, in vivo and in vitro metabolism, and liver alcohol dehydrogenase activity. Toxicol. Appl. Pharmacol. May. 16(3):718-727. Dept. of National Health and Welfare, Ottawa. Canada | | Ethanol | 7060 | 11290 - A
11204 - B
(A = 14.31 mL/kg;
B = 14.20 mL/kg;
used density of
0.789 to convert to
mg/kg) | NA | A: Behrens (1929)
B: Bliss (1938) | rats | NA | oral | NA | NA | 40 - 90 animals used; NICEATM used value B since authors stated it was more accurate | NA | Deichmann WB, Mergard EG. 1948. Comparative evaluation of methods employed to express the degree of toxicity of a compound. J Ind Hyg Toxicol 30:373-378. Albany Medical College, Albany, NY; University of Cincinnati, Cincinnati, OH | | Ethanol | 7060 | 11534
(14.6 mL/kg; used
density of 0.790 to
convert to mg/kg) | 10112 - 13193
(95% CL; 12.8 -
16.7 mL/kg) | Litchfield and
Wilcoxon method and
probit analysis | Sprague-Dawley
rats; 300-470 g;
older adult | male | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; groups of 6 rats used for
the studies; solvent used in undiluted
form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL. | | Ethanol | 7060 | 13660 | 11170 - 16710
(95% probability;
+/- 1.96 S.D.; slope
= 4.57) | probits (Bliss) | Wistar albino rats;
90-120 g | male | oral; stomach
tube; single
doses | 50% concentration in water;
largest dose given was 50
g/kg | most deaths occurred in 2 days; all deaths occurred in 14 days | groups of 10 animals; 10 animals per
dose | purified
commercial
grade | Smyth HF Jr, Seaton J, Fischer, L. 1941. The single dose toxicity of some glycols and derivatives. J Ind Hyg Toxicol 23:259-268. Mellon Institute, Pittsburgh, PA (This was the value used by the RC [from 1977 RTFCS]). Smyth HF, Well CS, West JS, Carpenter CP, 1970. An exploration of joint | | Ethanol | 7060 | 15543
(19.7 mL/kg; used
density of 0.789 to
convert to mg/kg) | | Thompson method;
Weil tables | Carworth-Wistar
rats; 90-120 g; 4-5
weeks | male | oral gastric
intubation | in aqueous solution;
concentration intubated = 10
mg/mL; dosages arranged in
a logarithmic series differing
by a factor of 2 | LD50 based on mortalities during a 14 day | non-fasted; groups of 5 rats; single oral dose toxicity | reagent grade | Smyth HF, Weil CS, West JS, Carpenter CP. 1970. An exploration of joint toxic action: IL Equitoxic versus equivolume mixtures. Toxicol Appl Pharmacol 17:498-503. (LD50 value) Smyth HF Jr, Carpenter CP, Weil CS, Pozzani, UC., Striegel, JA. And Nycum, JS. 1969. Range-finding toxicity data: List VII. Am Ind Hyg Assoc J 30:470-476. Carnegie-Mellon University. Pittsburgh. PA Smyth HF Jr., Carpenter CP, Weil CS., Pozzani, UC., and Striegel, JA. 1962. Range-finding toxicity data: List VI. Am Ind Hyg Assoc J 23:95-107. Mellon Institute of Industrial Research, Pittsburg. PA (experimental presentations). | | Ethanol | 7060 | 17775
(22.5 mL/kg; used
density of 0.790 to
convert to mg/kg) | 14852 - 21330
(95% CL; 18.8 -
27.0 mL/kg) | Litchfield and
Wilcoxon method and
probit analysis | Sprague-Dawley
rats; 80-160 g);
young adult | male | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; groups of 6 rats used for
the studies; solvent used in undiluted
form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, II. | | Ethylene glycol | 4700 | 4000 | 3100 - 5200 (95%
CI; slope = 258) | Litchfield and
Wilcoxon method | Fischer 344 (COB
CD F/Crl BR) rats;
150-200 g; 12-14
weeks | female | oral intubation | 0.1 log dosages with 5 rats
per level | animals observed for mortality daily for 14 days | fasted overnight; no dosage exceeded 24 g/kg bw; LD50 and 95% confidence limits calculated at 24 hour post-treatment; no deaths beyond 72 hour post-treatment | Aldrich
Chemical Co.;
high purity;
> 99%
ethylene
glycol | Clark CR, Marshall TC, Merickel BS, et al. 1979. Toxicological assessment of heat transfer fluids proposed for use in solar energy applications. Toxicol Appl Pharmacol 5(1):529-535. Inhalation Toxicology Research Institute, Ovelace Biomedical and Environmental research Institute, Alburquerque, NM | | Ethylene glycol | 4700 | 4700 | NA | | rats | NA | oral | NA | NA | reference in intranslated Russian; same
reference was cited in 1983/84 RTECs,
but this is not the LD50 used by RC
(ZEBET did not provide the reference) | NA | RTECS REFERENCE-RUSSIAN CODEN: GTPZAB Bibliographic
Data: Gigiena Truda i Professional'nye Zabolevaniya. Labor Hygiene and
Occupational Diseases. (VO MechdunarodnayaKniga, 113095 Moscow,
USSR) VI-36, 1957-1992. For publisher information, see MTPEEI
CODEN Reference: 26(6), 28, 1982. —
Filatova VS, Smirkova ES. 1982. Derivation of the maximum permissable
concentration of ethylen glycol in
the air of worksites. Gigiena Truda i
Professional Proc Zabolevaniya. 26(6): 28-30. | | Ethylene glycol | 4700 | >5000 | NA | NA | Holzman Sprague-
Dawley rats | male | oral gavage | 50 mg/kg, 500 mg/kg, and
5000 mg/kg in corn oil | clinical observations included depression,
labored breathing, emaciation, and alopecia | 3 groups of 10 males; no mortalities were observed | NA | from EPA TSCATS database; Acute Toxicity Study in Rats Administered 10 Materials (final report) with Cover Letter dated 062669, (1969), EPA Doc. No. 40-6942188, Fiche No. OTS0519234; FMC Corporation | | Ethylene glycol | 4700 | 5890
(5.28 cc/kg;
converted to mg/kg
using density of
1.1155) | 5053 - 7106
(95% probability;
4.53 - 6.37 cc/kg) | probits (Bliss) | rats from the same
strain; 275 +/- 25 g;
3 months +/- 9 days | | oral; stomach
tube; single
doses | single doses; 3904 mg/kg
7028 mg/kg; log doses
0.544, 0.608, 0.672, 0.735,
0.799; diluted 1 + 3 | most deaths occurred in 1 - 5 days; weakness and lack of muscular coordination; no deaths per dose: 3904 mg/kg 2/11; 4440 mg/kg 3/11; 543 mg/kg 3/11; 6057 mg/kg 5/11; 7028 mg/kg 8/11 | 5 doses for 11 animals each dose; 55 rats
used | NA | Laug EP, Calvery HO, Morris HJ, Woodard G. 1939. The toxicology of some glycols and derivatives. J Ind Hyg Toxicol 21:173-201. Division of Pharmacology, Food and Drug Administration, U.s. Dept. of Agriculture, Washington, D.C. | | Ethylene glycol | 4700 | 6135
(5.50 cc/kg;
converted to mg/kg
using density of
1.1155) | 5578 - 6749
(95% probability;
5.00 - 6.05 cc/kg) | probits (Bliss) | rats from different
sources; 175-325 g | male and
female (~
equal) | oral; stomach
tube; single
doses | single doses; 3904 mg/kg
8366 mg/kg | most deaths occurred in 1 - 5 days; weakness
and lack of muscular coordination; no deaths
per dose: 3904 mg/kg - 07', 4462 mg/kg -
4/20; 5020 mg/kg - 3/10; 5578 mg/kg -
11/20; 6135 mg/kg - 15/20; 6693 mg/kg -
4/10; 6972 mg/kg - 7/10; 7251 mg/kg - 2/10;
7809 mg/kg - 13/20; 8366 mg/kg - 17/20 | rats fasted for about 18 hours; 147 rats used; 76 died | NA | Laug EP, Calvery HO, Morris HJ, Woodard G. 1939. The toxicology of some glycols and derivatives. J Ind Hyg Toxicol 21:173-201. Division of Pharmacology. Food and Drug Administration, U.s. Dept. of Agriculture, Washington, D.C. | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|---|---|---|--|--------|--|--|---|--|---------------------|--| | Ethylene glycol | 4700 | 6500 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach intubation; | single dose; geometric factor
between dosage levels=2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Ethylene glycol | 4700 | 6537
(5.86 cc/kg;
converted to mg/kg
using density of
1.1155) | 5064 - 8455
(95% probability;
4.54 - 7.58 cc/kg) | probits (Bliss) | rats from the same
strain; 275 +/- 25 g;
3 months +/- 9 days | | oral; stomach
tube; single
doses | single doses; 3904 mg/kg
7028 mg/kg; log doses
0.544, 0.608, 0.672, 0.735,
0.799; undiluted | most deaths occurred in 1 - 5 days; weakness and lack of muscular coordination; no deaths per dose: 3904 mg/kg 2/11; 4440 mg/kg 2/11; 5243 mg/kg 4/11; 6057 mg/kg 5/11; 7028 mg/kg 6/11 | 5 doses for 11 animals each dose; 55 rats
used | NA | Laug EP, Calvery HO, Morris HJ, Woodard G. 1939. The toxicology of some glycols and derivatives. J Ind Hyg Toxicol 21:173-201. Division of Pharmacology, Food and Drug Administration, U.s. Dept. of Agriculture, Washington, D.C. | | Ethylene glycol | 4700 | 6860 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Ethylene glycol | 4700 | 7460 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Ethylene glycol | 4700 | 7887
(7.07 mL/kg;
converted to mg/kg
using density of
1.1155) | NA | Thompson method;
Weil tables | Carworth-Wistar
rats; 90-120 g; 4-5
weeks | male | oral gastric
intubation | in aqueous solution;
concentration intubated = 10
mg/mL; dosages arranged in
a logarithmic series differing
by a factor of 2 | LD50 based on mortalities during a 14 day period | non-fasted; groups of 5 rats; single oral dose toxicity | reagent grade | Smyth HF, Weil CS, West JS, Carpenter CP, 1970. An exploration of joint toxic action:II. Equitoxic versus equivolume mixtures. Toxicol Appl Pharmacol 17:498-503. (LD50 value) Smyth HF Jr., Carpenter CP, Weil CS, Pozzani, UC, Striegel, JA. And Nycum, JS. 1969. Range-inding toxicity data: List VII. Am Ind Hyg Assoc J 30:470-476. Carnegie-Mellon University, Pttsburgh, Pt. Smyth HF Jr., Carpenter CP, Weil CS, Pozzani, UC, and Striegel, JA. 1962. Range-finding toxicity data: List VI. Am Ind Hyg Assoc J 23:95-107. Mellon Institute of Industrial Research, Pittsburg, Pt. (experimental | | Ethylene glycol | 4700 | 8000 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Ethylene glycol | 4700 | 8120 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Ethylene glycol | 4700 | 8480 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Ethylene glycol | 4700 | 8540 | 7310 - 9990
(95% probability;
+/- 1.96 S.D.; slope
= 5.71) | probits (Bliss) | Wistar albino rats;
90-120 g | male | oral; stomach
tube; single
doses | 50% concentration in water;
largest dose given was 50
g/kg | most deaths occurred in 2 days; all deaths occurred in 14 days | groups of 10 animals; 10 animals per dose | commercial
grade | Smyth HF Jr, Seaton J, Fischer L. 1941. The single
dose toxicity of some glycols and derivatives. J Ind Hyg Toxicol 23:259-268.
Mellon Institute, Pittsburgh, PA. (This is the value used by the RC [from 1981/82 RTECS]). | | Ethylene glycol | 4700 | 9058
(8.12 mL/kg;
converted to mg/kg
using density of
1.1155) | NA | Thompson method;
Weil tables | Carworth-Wistar
rats; 90-120 g; 4-5
weeks | male | oral gastric
intubation | in aqueous solution;
concentration intubated = 10
mg/mL; dosages arranged in
a logarithmic series differing
by a factor of 2 | D50 based on mortalities during a 14 day | non-fasted; groups of 5 rats; single oral dose toxicity | reagent grade | 1981/82 RTECS) Smyth HF, Wett CS, West JS, Carpenter CP 1970. An exploration of joint toxic action:II. Equitoxic versus equivolume mixtures. Toxicol Appl Pharmacol 17:498-503. (LD50 value) Smyth HF Jr., Carpenter CP, Weil CS., Pozzani, UC., Striegel, JA. And Nycum, JS. 1969. Range-finding toxicity data: List VII. Am Ind Hyg Assoc J 30:470-476. Carnegie-Mellon University. Pittsburgh, PA Smyth HF Jr., Carpenter CP., Weil CS., Pozzani, UC., and Striegel, JA. 1962. Range-finding toxicity data: List VI. Am Ind Hyg Assoc J 23:95-107. Mellon Institute of Industrial Research, Pittsburg, PA (experimental | | Ethylene glycol | 4700 | 9850 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats; 150-200 g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | narameters. Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative Evaluation of Single Oral Test. Toxicology and Applied Pharmacology 11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical Company, Midland, MI | | Ethylene glycol | 4700 | 9900 | NA | Thompson (1947) and
Weil (1952); moving
average tables | Manor farms Wistar
rats (SPF); 150-200
g | male | oral; stomach
intubation | single dose; geometric factor
between dosage levels = 2;
undiluted | 14 day observation | 5 rats per dosage level; fasted overnight | NA | Weil CS, Wright GJ. 1967. Intra- and Interlaboratory Comparative
Evaluation of Single Oral Test. Toxicology and Applied Pharmacology
11:378-388. Mellon Institute, Pittsburgh, PA and The Dow Chemical
Company, Midland, MI | | Ethylene glycol | 4700 | > 10000 | NA | NA | Sprague-Dawley rats | female | oral; gavage | single dose; 1250, 2500,
5000, 10000 mg/kg doses | 14 day observation; no rats died | ethylene glycol engine coolant; test
material is 50/50 (vol.) ethylene glycol
and water mix with 1.5 oz./gal of DCA
inhibitor | NA | from EPA TSCATS database; Initial Submission: Acute Toxicological Properties & Handling Hazards With Ethylene Glycol Tested In Rats (Final Report) With Cover Letter Dated 051492; EPA Doc. No. 88-920003189 Fishe No.OTS0539777. The Dow Chemical Co. | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|--|--------------------|--|--|--|---|---|---| | Ethylene glycol | 4700 | 17800 | NA | Litchfield and
Wilcoxon method | Holzman Sprague-
Dawley rats; 243-
274 g | male | oral intubation | 316 mg/kg, 1000 mg/kg,
3160 mg/kg, 10000 mg/kg,
31600 mg/kg in corn oil | clinical observations included depression,
rapid respiration and hunching; 2 rats dead at
highest dose | 5 groups of 2 males; only mortalities
were both rats at the 31600 mg/kg dose;
fasted overnight | NA | from EPA TSCATS database; Acute Toxicity Study in Rats Administered
One of 10 Materials (final report) with Cover Letter dated 090869,
(1969), EPA Doc. No. 40-6942189, Fiche No. OTS0519235. FMC
Corporation | | Fenpropathrin | 18 | 18 - 24 | NA | NA | Charles River (?) | female | oral | 5% solution in DMSO | mortalities recorded 10 days after dosing | 15 male, 15 female rats used; 30 total rats; rats injected with 0.9% saline i.p. (1 mL/kg) 2 hour before dosing | NA | RTECS REFERENCE CODEN: PSSCBG Bibliographic Data: Pesticide Science. (Blackwell Scientific Pub. Ltd., POB 88, Oxford, UK) 17.1 1970- CODEN Reference: 8,579,1977. Crawford MJ, Hutson DH. 1977. The metabolism of the pyrthroid insecticide (+'e)-a-cyano-3-phenoxybenzyl 2,2,3,3-tetramethyl-cyclopropanecarboxylate, WL 41706, in the rat. Pestic Sci 8:579-599. Shell Research Limited. Kent. UK | | Fenpropathrin | 18 | 24 - 36 | NA | NA | Charles River (?) | male | oral | 5% solution in DMSO | mortalities recorded 10 days after dosing | 15 male, 15 female rats used; 30 total rats; rats injected with 0.9% saline i.p. (1 mL/kg) 2 hour before dosing | NA | Crawford MJ, Hutson DH. 1977. The metabolism of the pyrthroid insecticide (+/-)-a-cyano-3-phenoxybenzyl 2,2,3,3-tetramethyl-cyclopropanecarboxylate, W. 41706, in the rat. Pestic Sci 8:579-599. Shell Research Limited, Kent, UK. | | Fenpropathrin | 18 | 24 - 36 | NA | NA | Charles River (?)
rats | female | oral | 5% solution in DMSO | mortalities recorded 10 days after dosing | 12 male, 12 female rats used; 24 total
rats; rats pretreated with corn oil 18 hour
before dosing | NA | insecticide (+/-)-a-cyano-3-phenoxybenzyl 2,2,3,3-tetramethyl-
cyclopropanecarboxylate, WL 41706, in the rat. Pestic Sci 8:579-599.
Shell Research Limited, Kent, UK | | Fenpropathrin | 18 | 24 - 36 | NA | NA | Charles River (?) | male | oral | 5% solution in DMSO | mortalities recorded 10 days after dosing | 12 male, 12 female rats used; 24 total rats; rats pretreated with corn oil 18 hour before dosing | NA | Crawford MJ, Hutson DH. 1977. The metabolism of the pyrthroid insecticide (+'/-)-a-cyano-3-phenoxybenzyl 2,2,3,3-tetramethyl-cyclopropanecarboxylate, WL 41706, in the rat. Pestic Sci 8:579-599. Shell Research Limited, Kent, UK | | Fenpropathrin | 18 | 48.5 | 37.6 - 62.6
(CL) | NA | rats | female | oral gavage | single doses (mg/kg): 15,
20, 30, 50, 59, 77, 100, 120,
169; doses in corn oil | observed for 14 days; decrease of spontaneous motor activity, hypersensitivity, fibrillation, tremor, clonic convulsion, salivation, lacrimation, incontinence, hind limb ataxia; deaths resulted within 24 hour and signs of intoxication dissapeared in 24 - 48 hour, min. toxic dose was 20 mg/kg | 8 groups of 10 rats; 80 rats used | Fenpropathrin
97% (S-3206
lot. No.
022018) | Sumitomo Chemical Co., Japan; FT-50-0018; Jan. 1, 1979; U.S. EPA, | | Fenpropathrin | 18 | 49 | NA | NA | rats | female | oral | NA | NA | assumed to be same LD50 value as
Sumitomo 1979 | NA | Fujita Y. 1981. Meothrin (Fenpropathrin). Japan Plant Protection Assoc.
Japan Pesticide Information 38:21 -25. | | Fenpropathrin | 18 | 54 | 43.5 - 67.0
(CL) | NA | rats | male | oral gavage | single doses (mg/kg): 15,
20, 30, 50, 59, 77, 100, 120,
169; doses in corn oil | observed for 14 days; decrease of spontaneous motor activity, hypersensitivity, fibrillation, tremor, clonic convulsion, astivation, lacrimation, incontinence, hind limb ataxia; deaths resulted within 24 hour and signs of intoxication dissapeared in 24 - 48 hour; min. toxic dose was 20 mg/kg | 9 groups of 10 rats; 90 rats used | Fenpropathrin
97% (S-3206
lot. No.
022018) | Sumitomo Chemical Co., Japan; FT-50-0018; Jan. 1, 1979; U.S. EPA, | | Fenpropathrin | 18 | 54 | NA | NA | rats | male | oral | NA | NA | assumed to be same LD50 value as
Sumitomo 1979 | NA | Fujita Y. 1981. Meothrin (Fenpropathrin). Japan Plant Protection Assoc.
Japan Pesticide Information 38:21-25. | | Fenpropathrin | 18 | 66.7 | 50.6 - 87.9
(CL) | NA | Sprague Dawley rats | female | oral gavage | single doses (mg/kg): 0, 10, 25, 50, 60, 72, 86, 104, 125; doses in corn oil | salivation, urinary incontinence; signs
developed an hour after dosing but rats
recovered after 3 days; deaths resulted on | rats fasted 20 hour before dosing; 9 groups of 10 rats; 90 rats used | Fenpropathrin
91.8% (S-
3206
technical
grade, lot. No.
2TC019) | Sumitomo Chemical Co., Japan; FT-30-0081; Jan. 17, 1983; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00127342; EPA Chem. Code: 127901; Core Grade/Tox Record No. guideline 004567; EPA Accession No. 249937 | | Fenpropathrin | 18 | 70.6 | 53.7 - 92.7
(CL) | NA |
Sprague Dawley rats | male | oral gavage | single doses (mg/kg): 0, 10,
25, 50, 60, 72, 86, 104, 125;
doses in corn oil | day of dosine or day after dosine observed for 14 days; signs of intoxication with doses 25 mg/kg and above; muscular fibrillation, soff feees, diarrhea, tremor, decreased spontaneous activity, ataxia, limb paralysis, irregular respiration, slight salivation, urinary incontinence; signs developed an hour after dosing but rats recovered after 3 days; deaths resulted on days of drosine or day after dosine | rats fasted 20 hour before dosing; 9 groups of 10 rats; 90 rats used | Fenpropathrin
91.8% (S-
3206
technical
grade, lot. No.
2TC019) | Sumitomo Chemical Co., Japan; FT-30-0081; Jan. 17, 1983; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00127342; EPA Chem. Code: 127901; Core Grade/Tox Record No. guideline 004567; EPA Accession No. 249937 | | Fenpropathrin | 18 | 71.6 | 56.1 - 92.0 | NA | rats | female | oral | NA | NA | NA | Danitol S-
3206 (2.4
lb/GEC) | International Reseach & Development Corp.; 491-003; FT-11-0052; Oct. 26, 1981; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00128341; EPA Chem. Code: 127901; Core Grade/Tox Record No. guideline 003814 | | Fenpropathrin | 18 | 72.1 | 53.0 - 82.5 | NA | rats | male and
female | oral | NA | NA | NA | Danitol S-
3206 (2.4
lb/GEC) | International Reseach & Development Corp., 491-003; FT-11-0052; Oct. 26, 1981; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00128431; EPA Chem. Code: 127901; Core Grade/Tox Record No. guideline 003814 | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|---|---|--|--|--------------------|--|--|--|---|---|---| | Fenpropathrin | 18 | 72.4 | 62.1 - 84.3 | NA | rats | male | oral | NA | NA | NA | Danitol S-
3206 (2.4
lb/GEC) | International Reseach & Development Corp.; 491-003; FT-11-0052; Oct. 26, 1981; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00128341; EPA Chem. Code: 127901; Core Grade/Tox Record No. guideline 003814 | | Fenpropathrin | 18 | 107 | 69.8 - 164
(CL) | NA | Sprague Dawley rats | female | oral gavage | single doses (mg/kg): 0, 25, 50, 90, 120, 160, 220, 300 | observed for 14 days; toxic signs noted at 50 mg/kg and above; muscular fibrillation, tremor, ataxia, limb paralysis, irregular respiration, lacrimation, salivation, urinary incontinence, diarrhea | 8 groups of 10 rats; 80 rats used | 97.3% (S- | Sumitomo Chemical Co., Japan; FT-20-0076; Sept. 12, 1982; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00127344; EPA Chem. Code: 127901; Core Grade/Tox Record No. guideline 004567; EPA Accession No. 249937 | | Fenpropathrin | 18 | 164 | 115 - 234
(CL) | NA | Sprague Dawley rats | male | oral gavage | single doses (mg/kg): 0, 25, 50, 90, 120, 160, 220, 300 | observed for 14 days; toxic signs noted at 50 mg/kg and above; muscular fibrillation, tremor, ataxia, limb paralysis, irregular respiration, lacrimation, salivation, urinary incontinence, diarrhea | 8 groups of 10 rats; 80 rats used | 97.3% (S- | Sumitomo Chemical Co., Japan; FT-20-0076; Sept. 12, 1982; U.S. EPA,
Office of Pesticide Programs; Health Effects Division; Tox Oneliners;
MRID No. 00127344; EPA Chem. Code: 12790; Core Grade/Tox Record
No. guideline 004567; EPA Accession No. 249937 | | Gibberellic acid | 6300 | > 5000 | NA | NA | rats | male and
female | oral | NA | NA | NA | Gibberellins
Tech. GA47A,
90% | Hazleton Laboratories, Inc.; HLA 80603233; Aug. 29, 1988; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 40873201; EPA Chem. Code: 043801; Core Grade/Tox Record No. Guideline 007756; FEB. 9, 1990 | | Gibberellic acid | 6300 | > 5000 | NA | NA | rats | female | oral | NA | NA | NA | (gibberellic
acid); Lot 28-
T80-CF | Abbott Research Center, TA89-363; Feb. 20, 1990; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No.41558201; EPA Chem. Code: 043801; Core Grade/Tox Record No. Guideline 008645; Oct. 8, 1991 | | Gibberellic acid | 6300 | > 5000 | NA | NA | rats | NA | oral | 5000 mg/mL | NA | NA | cytokinin (as
kinetin)
0.012%;
Gibberellic
acid 0.0007% | University of Utah Reearch Institute 03-80; TR 05-485-002A; Jan. 20, 1984; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00142864; EPA Chem. Code: 043801; Core Grade/Tox Record No. Guideline 006198 | | Gibberellic acid | 6300 | > 5000 | NA | NA | rats | NA | oral | NA | NA | NA | Pro Gibb
(gibberellic
acid 10%); | Ricerca, Inc.; 90-0138; May 31, 1990; U.S. EPA, Office of Pesticide
Programs; Health Effects Division; Tox Oneliners; MRID No. 41560401;
EPA Chem. Code: 043801; Core Grade/Tox Record No. supplementary
008876; Dec. 5, 1991 | | Gibberellic acid | 6300 | > 5000 | NA | NA | rats | male and
female | oral | NA | NA | NA | Gibberellic
acid 7.5% a.l. | Ricerca, Inc.; 90-0138; May 31, 1990; U.S. EPA, Office of Pesticide
Programs; Health Effects Division; Tox Oneliners; MRID No. 41591103;
EPA Chem. Code: 043801; Core Grade/Tox Record No. Guideline
008571; Sept. 11, 1991 | | Gibberellic acid | 6300 | > 5000 | NA | NA | Charles River Crl
CD; 271-293 g;
young adult | male | oral | 5000 mg/mL in corn oil; 10
mL/kg dose; | 14 day observation; 0/5 animals dead; dyspnea | 5 animals used; tan to white powder | Gibberellins
Tech., 88.0% | Hazleton Laboratories, Inc.; HLA 90305639; June 22, 1989; U.S. EPA,
Office of Pesticide Programs; Health Effects Division; Tox Oneliners;
MRID No. 41605801; EPA Chem. Code: 043801; Core Grade/Tox
Record No. Guideline 008916; Dec. 17, 1991 | | Gibberellic acid | 6300 | > 5000 | NA | NA | Charles River Crl
CD; 245-271 g;
young adult | female | oral | 5000 mg/mL in corn oil | 14 day observation; 0/5 animals dead; dyspnea | 5 animals used; tan to white powder | Gibberellins
Tech., 88.0% | Hazleton Laboratories, Inc.; HLA 90305639; June 22, 1989; U.S. EPA,
Office of Pesticide Programs; Health Effects Division; Tox Oneliners;
MRID No. 41605801; EPA Chem. Code: 043801; Core Grade/Tox
Record No. Guideline 008916; Dec. 17, 1991 | | Gibberellic acid | 6300 | 5780 | NA | NA | rats | male | oral | NA | NA | NA | (gibberellic | Abbott Research Center, TA89-363; Feb. 20, 1990; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No.41558201; EPA Chem. Code: 043801; Core Grade/Tox Record No. Guideline 008645; Oct. 8, 1991 | | Gibberellic acid | 6300 | 6300 | NA | NA | rats | NA | oral | NA | NA | NA | NA | RTECS REFERENCE-SECONDARY SOURCE Gibberellic Acid. (1977). CODEN: 85ARAE Bibliographic Data: "Agricultural Chemicals," Thomson, W.T., 4 vols., Fresno, C.A, Thomson Publications, 1976/77 revision CODEN Reference: 3.43,1976/1977. | | Glutethimide | 600 | 600 | NA | NA | rats | NA | oral | NA | NA | NA | NA | RTECS REFERENCE CODEN: 27ZQAG Bibliographic Data: "Psychotropic Drugs and Related Compounds," 2nd ed., Usdin, E., and D.H. Efron, Dept. of Health, Education and Welfare, Washington, DC, 1972 CODEN Reference: 233.1972. | | Glycerol | 12600 | 12600 | NA | NA | rats | NA | oral | NA | NA | reference in Russian | NA | RTECS REFERENCE-RUSSIAN CODEN: FRZKAP Bibliographic
Data: Farmatsevtichnii Zhurnal (Kiev). (V/O Mezhdunarodnaya Kniga,
113095 Moscow, USSR) V.3- 1930- CODEN Reference: (6),56,1977. | | Glycerol | 12600 | 15890
(12.6 cc/kg; used
density of 1.261 for
conversion) | NA | NA | rats | NA | oral | NA | NA | Reference provided by ZEBET as source
of RC value (i.e., from 1983/84
RTECS), but mg/kg value calculated
from cc/kg value is different from RC
value (12691 vs 15890 mg/kg). Maybe
ZEBET didn't use density? This is not a
primary reference. | NA | Woodard G, Johnson VD, Nelson AA. 1945. Acute toxicity of 2-methyl, 2-
4 pentanediol. Fed Proc 4:142-143. (Supposed 1983/84
RTECS reference) | | Glycerol | 12600 | 27500 | 23950 - 31610
(95% probability;
+/- 1.96 S.D.; slope
= 8.90) | probits (Bliss) | Wistar albino rats;
90-120 g | male | oral; stomach
tube; single
doses | 50% concentration in water;
largest dose given was 50
g/kg | most deaths occurred in 2 days; all deaths occurred in 14 days | groups of 10 animals; 10
animals per dose | purified
commercial
grade | Smyth HF Jr, Seaton J, Fischer L. 1941. The single dose toxicity of some glycols and derivatives. J Ind Hyg Toxicol 23:259-268. Mellon Institute, Pittsburgh, PA | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|--------------------|--|--|---|--|--|--| | Glycerol | 12600 | 26730 - A
27650 - B
(A = 21.2 mL/kg; B
= 21.93 mL/kg;
used density of
1.261 to convert to | NA | A: Behrens (1929)
B: Bliss (1938) | rats | NA | oral | NA | NA | 40 - 90 animals used; NICEATM used value B since authors stated it was more accurate | NA | Deichmann WB, Mergard EG. 1948. Comparative evaluation of methods employed to express the degree of toxicity of a compound. J Ind Hyg Toxicol 30:373-378. **Medical College, Albany, NY, University of Cincinnati, Cincinnati, OH | | Haloperidol | 128 | 128 | 77 - 212 | NA | rat | NA | oral | NA | NA | unknown primary source of information | NA | RTECS REFERENCE CODEN: ARZNAD Bibliographic Data: Araneimitel-Forschung, Drug Research, (Editio Cantor Verlag, Postfach 1255, W-7960 Aulendorf, Fed. Rep. Ger) V.1-1951- CODEN Reference: 24,45,1974 Niemegeers CJC, Janssen PAJ. 1974. Bromoperidol, a new potent neuroleptic of the butyrophenone series. Arzneimittel-Forschung Drug Research 24 (1):45- 25. Janssen Pharmacourities Relation | | Haloperidol | 128 | 165 | NA | NA | CFN; newborn | NA | oral | NA | NA | information from: drug applications
from pharmaceutical manufacturers, the
literature, and FDA labs | | Janssen Pharnaceutica, Beleium Goldenthal El. 1971. A compilation of LDSO values in newborn and adult animals. Toxicology and Applied Pharamacology 18:185-207. Bureau of Drugs, Food and Drug Administration, Dept. of Health, Education, and Welfare, Rockville, MD. | | Haloperidol | 128 | 850 | 617 - 1173 | NA | Holtzman; adult | male | oral | NA | NA | information from: drug applications
from pharmaceutical manufacturers, the
literature, and FDA labs | NA | Goldenthal El. 1971. A compilation of LD50 values in newborn and adult
animals. Toxicology and Applied Pharamacology 18:185-207.
Bureau of Drugs, Food and Drug Administration, Dept. of Health,
Education, and Welfare, Rockville, MD. | | Hexachlorophene | 56 | 9 | 2
(S.E.) | Miller and Tainter
(1944) | Sprague-Dawley
rats; 10 day | male and
female | oral; stomach
tube | 1% carboxymethylcellulose | observed for 10 day | approximately equal numbers of males
and females; 28 rats | NA | Nieminen L, Bjondahn K, Mottonen M. 1973. Effect of hexachlorophene on the rat brain during ontogenesis. Fd Cosmet Toxicol 11:635-639. | | Hexachlorophene | 56 | 42 | 5
(S.E.) | Miller and Tainter
(1944) | Sprague-Dawley
rats; 20 day | male and
female | oral; stomach
tube | 1% carboxymethylcellulose | observed for 10 day | approximately equal numbers of males and females; 22 rats; values from graph | NA | Nieminen L, Bjondahn K, Mottonen M. 1973. Effect of hexachlorophene on the rat brain during ontogenesis. Fd Cosmet Toxicol 11:635-639. | | Hexachlorophene | 56 | 56 | 8
(S.E.) | Miller and Tainter
(1944) | Sprague-Dawley
rats; 300 day | male and
female | oral; stomach
tube | 1% carboxymethylcellulose | observed for 10 day | approximately equal numbers of males
and females; 14 rats; values from graph | NA | Nieminen L, Bjondahn K, Mottonen M. 1973. Effect of hexachlorophene on the rat brain during ontogenesis. Fd Cosmet Toxicol 11:635-639. | | Hexachlorophene | 56 | 56 | 51 - 62
(95% CI) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats
(SPF); adult; | female | oral; stomach
tube | peanut oil solution | died within 3 days; severe depression and diarrhea | 5 or more groups of 10 rats each | USP | RTECS REFERENCE CODEN: TXAP49 Bibliographic Data:
Toxicology and Applied Pharmacology. (Academic Press, Inc., 1 E. First
St., Duluth, Mrs 5862) V.I. 1995 - CODEN Reference: 25, 332, 1973. —
Gaines TB, Kimbrough RD, Linder RE. 1973. The oral and dermal
toxicity of hexachlorophene. Toxicology and Applied Pharmacology
25;332,343. | | Hexachlorophene | 56 | 57 | 52 - 61
(95% CL; slope =
13.5) | Finney's maximum
likelihood probit | Sherman strain rats
(SPF); min wt. =
200 g; min age of
90 days | female | oral; stomach
tube | chemical in peanut oil;
0.005mL/g of bw | observed for at least 14 days after dosing or
until recovered from signs of toxicity | At least 40 rats used; min. of 10 animals
per group tested; min. of 4 doses;
animals used are the same as Gaines
1973 | technical
grade | Gaines TB, Linder RE. 1986. Acute toxicity of pesticides in adult and weanling rats. Fundam Appl Toxicol 7(2):299-308. Health Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC | | Hexachlorophene | 56 | 57.6 | 50.8 - 65.5
(95% CI) | Weil (1952) method | Wistar albino rats;
400 g; 17 weeks | male | oral | corn oil solution; geometric
dose factor of 1.2 | preliminary observations over a 1 - 2 week
period after dosing; no significant mortalities
occurred after 5 days; toxicity signs:
lethargy, posterior paralysis, increased rate o
respiration, hyperthermia, and diarrhea | 16 rats at 4 dosage levels; fasted overnight | U.S.P. grade;
Givaudan
Corp.,
Clifton, NJ | Nakaue HS, Dost FN, Buhler DR. 1973. Studies On The Toxicity Of
Hexachlorophene In Rats. Toxicol Appl Pharmacol 24:239-49.A19
Oregon State University, Corvallis, OR | | Hexachlorophene | 56 | 60 | 4
(S.E.) | Miller and Tainter
(1944) | Sprague-Dawley;
70 day | male and
female | oral; stomach
tube | 1% carboxymethylcellulose | observed for 10 day | approximately equal numbers of males and females; 84 rats; values from graph | NA | Nieminen L, Bjondahn K, Mottonen M. 1973. Effect of hexachlorophene on the rat brain during ontogenesis. Fd Cosmet Toxicol 11:635-639. | | Hexachlorophene | 56 | 60.3 | 55.0 - 66.0
(95% CI) | Weil (1952) method | Wistar albino rats;
100 g; 45 weeks | male | oral | corn oil solution; geometric
dose factor of 1.2 | preliminary observations over a 1 - 2 week
period after dosing; no significant mortalities
occurred after 5 days; toxicity signs:
lethargy, posterior paralysis, increased rate o
respiration, hyperthermia, and diarrhea | 16 rats at 4 dosage levels; fasted overnight | U.S.P. grade;
Givaudan
Corp.,
Clifton, NJ | Nakaue HS, Dost FN, Buhler DR. 1973. Studies On The Toxicity Of
Hexachlorophene In Rats. Toxicol Appl Pharmacol 24:239-49.A19
Oregon State University, Corvallis, OR | | Hexachlorophene | 56 | 63 | 55.5 - 71.8
(95% CI) | Weil (1952) method | Wistar albino rats;
300 g; 10 weeks | male | oral | corn oil solution; geometric
dose factor of 1.2 | preliminary observations over a 1 - 2 week
period after dosing; no significant mortalities
occurred after 5 days; toxicity signs:
lethargy, posterior paralysis, increased rate o
respiration, hyperthermia, and diarrhea | 16 rats at 4 dosage levels; fasted overnight | U.S.P. grade;
Givaudan
Corp.,
Clifton, NJ | Nakaue HS, Dost FN, Buhler DR. 1973. Studies On The Toxicity Of
Hexachlorophene In Rats. Toxicol Appl Pharmacol 24:239-49.A19
Oregon State University: Corvallis, OR | | Hexachlorophene | 56 | 63 | 45.9 - 87.2
(95% CI) | Weil (1952) method | Wistar albino rats;
200 g; 9 weeks | female | oral | corn oil solution; geometric
dose factor of 1.2 | preliminary observations over a 1 - 2 week
period after dosing; no significant mortalities
occurred after 5 days; toxicity signs:
lethargy, posterior paralysis, increased rate o
respiration, hyperthermia, and diarrhea | 16 rats at 4 dosage levels; fasted overnight | U.S.P. grade;
Givaudan
Corp.,
Clifton, NJ | Nakaue HS, Dost FN, Buhler DR. 1973. Studies On The Toxicity Of
Hexachlorophene In Rats. Toxicol Appl Pharmacol 24:239-49.A19
Oregon State University, Corvallis, OR | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE |
-----------------------|--|--|--|--|--|--------------------|--|---|--|--|--|--| | Hexachlorophene | 56 | 66 | 59 - 75
95% CL; slope 10.6 | Finney's maximum
likelihood probit | Sherman strain rats
(SPF); min wt. =
175 g; min age of
90 days | male | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed for at least 14 days after dosing or
until recovered from signs of toxicity | At least 40 rats used; min. of 10 animals
per group tested; min. of 4 doses;
animals used are the same as Gaines
1973 | technical
grade | Gaines TB, Linder RE. 1986. Acute toxicity of pesticides in adult and weanling rats. Fundam Appl Toxicol 7(2):299-308. Health Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC | | Hexachlorophene | 56 | 66 | 57 - 75
(95% CI) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats
(SPF); adult | male | oral; stomach
tube | peanut oil solution | died within 12 days; severe depression and diarrhea | 5 or more groups of 10 rats each; | NA | Gaines TB, Kimbrough RD, Linder RE. 1973. The oral and dermal toxicity of hexachlorophene. Toxicology and Applied Pharmacology 25:332-343. Environmental Protection Agency, Chamblee, GA | | Hexachlorophene | 56 | 69.1 | 64.6 - 94.2
(95% CI) | Weil (1952) method | Wistar albino rats;
100 g; 5 weeks | female | oral | corn oil solution; geometric
dose factor of 1.2 | preliminary observations over a 1 - 2 week
period after dosing, no significant mortalities
occurred after 5 days; toxicity signs:
lethargy, posterior paralysis, increased rate of
respiration, hyperthermia, and diarrhea | 16 rats at 4 dosage levels; fasted overnight | U.S.P. grade;
Givaudan
Corp.,
Clifton, NJ | Nakaue HS, Dost FN, Buhler DR. 1973. Studies On The Toxicity Of
Hexachlorophene In Rats. Toxicol Appl Pharmacol 24:239-49.A19
Oregon State University, Corvallis, OR | | Hexachlorophene | 56 | 69.2 | 55.5 - 86.2
(95% CI) | Weil (1952) method | Wistar albino rats;
200 g; 7 weeks | male | oral | corn oil solution; geometric
dose factor of 1.2 | preliminary observations over a 1 - 2 week
period after dosing, no significant mortalities
occurred after 5 days; toxicity signs:
lethargy, posterior paralysis, increased rate of
respiration, hyperthermia, and diarrhea | 16 rats at 4 dosage levels; fasted overnight | U.S.P. grade;
Givaudan
Corp.,
Clifton, NJ | Nakaue HS, Dost FN, Buhler DR. 1973. Studies On The Toxicity Of
Hexachlorophene In Rats. Toxicol Appl Pharmacol 24:239-49.A19
Oregon State University, Corvallis, OR | | Hexachlorophene | 56 | 83 | 6
(S.E.) | Miller and Tainter
(1944) | Sprague-Dawley
rats; 25 day | male and
female | oral; stomach
tube | 1% carboxymethylcellulose | observed for 10 day | approximately equal numbers of males
and females; 12 rats; values from graph | NA | Nieminen L, Bjondahn K, Mottonen M. 1973. Effect of hexachlorophene on the rat brain during ontogenesis. Fd Cosmet Toxicol 11:635-639. | | Hexachlorophene | 56 | 84 | 8
(S.E.) | Miller and Tainter
(1944) | Sprague-Dawley
rats; 50 day | male and
female | oral; stomach
tube | 1% carboxymethylcellulose | observed for 10 day | approximately equal numbers of males
and females; 16 rats; values from graph | NA | Nieminen L, Bjondahn K, Mottonen M. 1973. Effect of hexachlorophene on the rat brain during ontogenesis. Fd Cosmet Toxicol 11:635-639. | | Hexachlorophene | 56 | 87 | 79.2 - 95.5
(95% CI) | Weil (1952) method | Wistar albino rats;
67 g; 4 weeks | male | oral | corn oil solution; geometric
dose factor of 12 | preliminary observations over a 1 - 2 week
period after dosing, no significant mortalities
occurred after 5 days; toxicity signs:
lethargy, posterior paralysis, increased rate of
respiration, hyperthermia, and diarrhea | 16 rats at 4 dosage levels; fasted overnight | U.S.P. grade;
Givaudan
Corp.,
Clifton, NJ | Nakaue HS, Dost FN, Buhler DR. 1973. Studies On The Toxicity Of
Hexachlorophene In Rats. Toxicol Appl Pharmacol 24:239-49.A19
Oregon State University, Corvallis, OR | | Hexachlorophene | 56 | 87 | 79.5 - 95.0
(95% CI) | Weil (1952) method | Wistar albino rats;
68 g; 4 weeks | female | oral | corn oil solution; geometric
dose factor of 12 | preliminary observations over a 1 - 2 week
period after dosing; no significant mortalities
occurred after 5 days; toxicity signs:
lethargy, posterior paralysis, increased rate of
respiration, hyperthermia, and diarrhea | 16 rats at 4 dosage levels; fasted overnight | U.S.P. grade;
Givaudan
Corp.,
Clifton, NJ | Nakaue HS, Dost FN, Buhler DR. 1973. Studies On The Toxicity Of
Hexachlorophene In Rats. Toxicol Appl Pharmacol 24:239-49.A19
Oregon State University; Corvallis, OR | | Hexachlorophene | 56 | 104.03 | 84.45 - 128.20
(95% fiducial limit) | Bliss method | normal white rats;
150-250 g | NA | NA | 40, 80, 120, 160, 200 mg/kg | 25 rats used; 12 dead within 40 hours | 5 groups of 5 rats each | NA | Chung HL., 1963. Hexachlorophene (G-11) as a new specific drug against Clonorchiasis Sinensis. Chinese Medical Journal. 82. No. 11. November. Peking Sino-Soviet Friendship Hospital, Peking, China | | Hexachlorophene | 56 | 111 | 12
(S.E.) | Miller and Tainter
(1944) | Sprague-Dawley
rats; 32 day | male and
female | oral; stomach
tube | 1% carboxymethylcellulose | observed for 10 days | approximately equal numbers of males and females; 66 rats | NA | Nieminen L, Bjondahn K, Mottonen M. 1973. Effect of hexachlorophene on the rat brain during ontogenesis. Fd Cosmet Toxicol 11:635-639. | | Hexachlorophene | 56 | 120 | 110 - 131
(95% CI) | Litchfield and
Wilcoxin 1949 | Sherman strain rats
(SPF); weanling | female | oral; stomach
tube | peanut oil solution | died within 5 days; depression and posterior paralysis | 5 or more groups of 10 rats each | NA | Gaines TB, Kimbrough RD, Linder RE. 1973. The oral and dermal toxicity of hexachlorophene. Toxicology and Applied Pharmacology 25:332 -343. Environmental Protection Agency, Chamblee, GA | | Hexachlorophene | 56 | 121 | 112 - 133
95% CL; slope 14.8 | Finney's maximum
likelihood probit | Sherman strain rats
(SPF); 4-6 weeks | female | oral; stomach
tube | mL/g of bw | observed for at least 14 days after dosing or
until recovered from signs of toxicity | At least 40 rats used; min. of 10 animals
per group tested; min. of 4 doses;
animals used are the same as Gaines
1973 | technical
grade | Gaines TB, Linder RE. 1986. Acute toxicity of pesticides in adult and weanling rats. Fundam Appl Toxicol 7(2):299-308. Health Effects Research Laboratory; U.S. EPA, Research Triangle Park, NC | | Hexachlorophene | 56 | 165 | 149 - 179
(95% CI) | Probit analysis | Crl-CD rats from
Charles River
Breeding lab; 220 -
280 g; 60 days | male | oral;
intragastric
intubation | 0.5 - 3.9% suspens;
dissolved or suspended in
corn oil; single dose; 100,
140, 175, 200 mg/kg doses | observed daily for 14 days; death within 6
days; toxic symptoms: staining of the face
and perineal area, weakness, diarrhea,
weight loss | non fasted; 4 groups of 10; 40 rats used;
17 rats died | 99+% pure;
Givaudan
Corp., Clifton,
NJ | Dashiell OL, Kennedy GL Jr. 1984. The effects of fasting on the acute oral toxicity of nine chemicals in the rat. J Appl Toxicol 4(6): 320-325.
E.I. Du Pont de Nemours & Co., Newark, DE | | Hexachlorophene | 56 | 215 | 191 - 237
(95% CI) | Probit analysis | Crl-CD rats from
Charles River
Breeding lab; 220 -
280 g; 60 days | male | oral;
intragastric
intubation | 0.26 - 1.4% suspens
dissolved or suspended in
corn oil; single dose; 50,
100, 170, 225, 275 mg/kg
doses | observed daily for 14 days; death within 6
days; toxic symptoms: staining of the face
and perineal area, weakness, diarrhea,
weight loss | fasted 24 hours before dosing; 5 groups
of 10; 50 rats used; 16 rats died | 99+% pure;
Givaudan
Corp., Clifton,
NJ | Dashiell OL, Kennedy GL Jr. 1984. The effects of fasting on the acute oral toxicity of nine chemicals in the rat. J Appl Toxicol 4(6): 320-325.
E.I. Du Pont de Nemours & Co., Newark, DE | | Lactic acid | 3543 | 3543 | NA NA | RTECS REFERENCE CODEN: FMCHA2 Bibliographic Data: Farm
Chemicals Handbook. (Meister Pub., 37841 Euclid Ave., Willoughy, OH
44094) CODEN Reference: -, C252, 1991. | | Lactic acid | 3543 | 3730 | 3020 - 4610
(95% probability;
+/- 1.96 S.D. slope
= 4.04) | probits (Bliss) | Wistar albino rats;
90-120 g | male | oral; stomach
tube; single
doses | concentration in water;
largest dose given was 50
g/kg | most deaths occurred in 2 days; all deaths occurred in 14 days | groups of 10 animals; 10 animals per dose |
purified
commercial
grade | Smyth HF Jr, Seaton J, Fischer L. 1941. The single dose toxicity of some glycols and derivatives. J Ind Hyg Toxicol 23:259-268. Mellon Institute, Pittsburgh, PA | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|---|--|--------|--|--|---|---|--|--| | Lindane | 76 | 76 - 200 | NA | NA | rats | NA | oral | NA | NA | secondary source; unknown primary source | NA | RTECS REFERENCE CODEN: SPEADM Bibliographic Data: Special Publication of the Entomological Society of America. (4603 Calvert Rd., College Park, MD 20740) CODEN Reference: 78-1.11,1978. Kenaga EE, Morgan RW. 1978. Commercial and Experimental Organic Insecticides. 1978 Revision. Special Publication 78-1:1-76. The Dow Chemical Company. Midland. MI | | Lindane | 76 | 88 | 76 - 101
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min. wt. = 175 g;
min. age of 90 days | male | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 8 days; 14 days observation | 89 rats tested; not fasted | technical
grade | Gaines TB. 1960. The acute toxicity of pesticides to rats. Toxicol Appl
Pharmacol 2:88-99 U.S. Dept. of Health, Education, and Welfare,
Savannah, GA | | Lindane | 76 | 91 | 83 - 100
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min. wt. = 200 g;
min. age of 90 days | female | oral; stomach
tube | chemical in peanut oil;
0.005mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 7 days; 14 days observation | 69 rats tested; not fasted | technical
grade | Gaines TB. 1960. The acute toxicity of pesticides to rats. Toxicol Appl
Pharmacol 2:88-99 U.S. Dept. of Health, Education, and Welfare,
Savannah, GA | | Lindane | 76 | 100 | NA | Litchfield and
Wilcoxon method
(1949) | CFY strain rats;
120+ g; adult | female | oral | NA | NA | NA | 99.5% pure;
Budapest
Chemical
Works | Desi I. 1983. Neurotoxicological investigaton of pesticides in animal experiments. Neurobehav Toxicol 5:503-515. National Institute of Hygiene, Hungary | | Lindane | 76 | 125 | NA | NA | rats | NA | oral; stomach
tube | NA | hypersensitivity and convulsions | information from the laboratories of Division of Pharmacology, U.S. FDA.; fasted animals | NA | Lehman AJ. 1951. Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides. Quarterly Bulletine (Association of Food and Drug Officials of the United States). Vol. 15:122-133. U.S. FDA | | Lithium I carbonate | 525
553 | 525 | 460-598 (95%
CI) | Litchfield and
Wilcoxon method | Wistar rats; 180 g
(ave) | female | oral | in solution; 347, 417, 500, 600, 720, 864 mg/kg | 7 days observation; deaths/dose (mg/kg): 347
0/10, 417-1/10, 500-3/10, 600-5/10, 720-
8/10, 864-10/10; 14 deaths on day 1, 12
deaths on day 2, 1 death on day 3; all rats at
highest dose dead by day 2 | Used 10 rats/dose; RTECS reference; in Japanese | reagent grade | Nakasawa M, et al. 1973. Lithium carbonate toxicity tests, rat and mouse acute toxicity. Kiso to Rinsho Clinical Report 7:1273-1277. | | Lithium I carbonate | 525
553 | 553 | NA | NA | rats | NA | oral | NA | NA | RTECS reference that provides
summary data only. LD50 value is
unreferenced and unsupported | reagent grade | Filov VA, Ivin BA, Bandman AL (eds.) 1993. Harmful Chemical
substances. Volume 1: Elements in Groups 1-IV of the Periodic Table and
their Inorganic Compounds. Ellis Horwood Limited (publisher). First
published in Russian asVrednye khimichesklye vechestra.
Neorganicheskiye soyedineniga elementor 1-IV grup. VA Filov, ed.
Khimiva St. Petersburz. 1988. | | Lithium I carbonate | 525
553 | 590 | 505-691 (95%
CI) | Litchfield and
Wilcoxon method | Wistar rats; 220 g
(ave) | male | oral | in solution; 347, 417, 500, 600, 720, 864 mg/kg | 7 d observation; deaths/dose (mg/kg): 347-
0/10, 417-2/10, 500-3/10, 600-5/10, 720 -
8/10, 864-10/10; most deaths on day 2; 3
deaths on day 1 at highest dose; 3 deaths at
lower doses on day 3 | Used 10 rats/dose; RTECS reference, in Japanese | reagent grade | Nakasawa M, et al. 1973. Lithium carbonate toxicity tests, rat and mouse acute toxicity. Kiso to Rinsho Clinical Report 7:1273-1277. | | Lithium I carbonate | 525
553 | 710 | NA | Thompson method;
Weil tables | Carworth-Wistar
rats; 90-120 g; 4-5
weeks | male | oral gastric intubation | in aqueous solution;
concentration intubated =
200 mg/mL; dosages
arranged in a logarithmic
series differing by a factor of
2 | LD50 based on mortalities during a 14 day period; | non-fasted; groups of 5 rats; single oral dose toxicity | reagent grade | Smyth HF Jr, Carpenter CP, Weil CS, Pozzani UC, Striegel JA, Nycum JS. 1969. Range-finding toxicity data: List VII. Am Ind Hyg Assoc J 30:470-476. Carnegie-Mellon University, Pittsburgh, Pt (LID50 value) | | Meprobamate | 794 | 486 | +/- 24
(S.E.) | Miller and Tainter
(1944) | FDRL-strain rats;
21 days | female | oral | NA | observed for 7 days post-treatment | NA | NA | Weinberg MS, Goldhamer RE, Carson S. 1966. Acute oral toxicity of
various drugs in newborn rats after treatment of the dam during gestation.
Toxic Appl Pharmac 9:234-239.
Food and Drug Research Laboratories, Inc., Maspeth, NY | | Meprobamate | 794 | 794
(outlier) | 584 - 1080
(95% CL) | Litchfield and
Wilcoxon method
(1949) | rats; 117-180 g;
adult | female | oral | suspension; 2.3 - 23.2 mg/kg
dose levels | hypothermia, prostration, bradypnea, ptosis, sluggish corneal reflex | 5 rats per dose level; 20 rats used | NA | RTECS REFÉRENCE CODEN: TXAPA9 Bibliographic Data: Toxicology and Applied Pharmacology. (Academie Press, Inc., 1 E. First St., Duluth, Mr. SS802) V.1-199-CODEN Reference: 1993,1971 Franko BV, Ward JW, Gilbert DL, Woodard G. 1971. Toxicologic studies of glycopyrralate in combination with other drugs. Toxicology and Appled Pharmacology 19-93-102. **Boodand Research Composation Herndon VA** | | Meprobamate | 794 | 1286 | +/- 81
(S.E.) | Miller and Tainter
(1944) | FDRL-strain rats;
100 days | male | oral | NA | observed for 7 days post-treatment | NA | NA | Weinberg MS, Goldhamer RE, Carson S. 1966. Acute oral toxicity of
various drugs in newborn rats after treatment of the dam during gestation.
Toxic Appl Pharmac 9:234-239. Food and Drug Research Laboratories, Inc., Maspeth, NY | | Meprobamate | 794 | 1290 | +/- 104
(S.E.) | Miller and Tainter
(1944) | FDRL-strain rats;
63 days | male | oral | NA | observed for 7 days post-treatment | NA | NA | Weinberg MS, Goldhamer RE, Carson S. 1966. Acute oral toxicity of
various drugs in newborn rats after treatment of the dam during gestation.
Toxic Appl Pharmac 9-:234-29.
Food and Drug Research Laboratories. Inc., Maspeth. NY | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|--------|--|--|--
--|----------------------------------|---| | Meprobamate | 794 | 1346 | +/- 82
(S.E.) | Miller and Tainter
(1944) | FDRL-strain rats;
21 days | male | oral | NA | observed for 7 days post-treatment | NA | NA | Weinberg MS, Goldhamer RE, Carson S. 1966. Acute oral toxicity of
various drugs in newborn rats after treatment of the dam during gestation.
Toxic Appl Pharmac 9:234-239.
Food and Drug Research Laboratories, Inc., Maspeth, NY | | Meprobamate | 794 | 1361 | +/- 76
(S.E.) | Miller and Tainter
(1944) | FDRL-strain rats;
100 days | female | oral | NA | observed for 7 days post-treatment | NA | NA | Weinberg MS, Goldhamer RE, Carson S. 1966. Acute oral toxicity of
various drugs in newborn rats after treatment of the dam during gestation.
Toxic Appl Pharmac 9:234-239.
Food and Drug Research Laboratories, Inc., Maspeth, NY | | Meprobamate | 794 | 1410 | +/- 83
(S.E.) | Miller and Tainter
(1944) | FDRL-strain rats;
63 days | female | oral | NA | observed for 7 days post-treatment | NA | NA | Weinberg MS, Goldhamer RE, Carson S. 1966. Acute oral toxicity of
various drugs in newborn rats after treatment of the dam during gestation.
Toxic Appl Pharmac 9:234-239.
Food and Drug Research Laboratories, Inc., Maspeth, NY | | Meprobamate | 794 | 1470 | | Litchfield and
Wilcoxon method
(1949) | rats; 117-180 g;
adult | male | oral | suspension; 2.3 - 23.2 mg/kg
dose levels | hypothermia, prostration, bradypnea, ptosis, sluggish corneal reflex | 5 rats per dose level; 20 rats used | NA | Franko BV, Ward JW, Gilbert DL, Woodard G. 1971. Toxicologic studies
of glycopyrralate in combination with other drugs. Toxicology and Appled
Pharmacology 19-93-102.
Woodard Research Corporation, Herndon, VA | | Meprobamate | 794 | 1522 | +/- 16
(S.E.) | Miller and Tainter
(1944) | Charles River CD
and Sprague-
Dawley strains; >
100 g; adult | NA | oral intubation | up to 50 mL/kg | rats observed for 7 days; observed up to 14
days when heavy metals or other compounds
that produce latent death were investigated | fasted overnight | NA | Yeary RA, Benish RA, Finkelstein M. 1966. Acute Toxicity of Drugs in
Newborn Animals. Journal of Pediatrics 69 (4):663-667.
Dept. of Veterinary Preventive Medicine, Ohio State University,
Columbus, OH | | Mercury II chloride | 1 | 1 - 5 | NA | NA | rats | NA | oral | NA | NA | lists LD50 range as 1 - 5 mg/kg | NA | RTECS REFERENCE CODEN: PEMNDP Bibliographic Data:
Pesticide Manual. (The British Crop Protection Council, 20 Bridport Rd.,
Thornton Heath CR4 7QG, UK) V.1- 1968- CODEN Reference:
9,550,1991 | | Mercury II chloride | 1 | 12 | 9 - 17
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley
rats; 190-300 g | female | oral gavage | single dose | 14 day observation; toxicity symptoms:
motor activity decrease, respiratory effects,
tremors, blanching, piloerection, diarrhea,
chouromodacryorrhoea; time to onset of
signs < 1 day; duration of signs 11 days;
animals fasted 16 -20 hours before | UDPTest | NA | Yam J, Reer PJ, Bruce RD. 1991. Comparison of the up-and-down method and the fixed-dose procedure for acute oral toxicity testing. Food Chem Toxicol 29(4):259-264. The Procter and Gamble Co., Cincinnati, OH | | Mercury II chloride | 1 | 24 | 17.9 - 32.2 | Bliss-Probit method | Sprague-Dawley
rats; 5 weeks | male | oral gavage | dissolved in saline; range
(mg/kg) of doses 10.6, 13.8,
17.9, 23.3, 30.3, 39.7 | observed at 6 hours after dosing and a once a
day for 1-2 weeks; most dead within 3 days;
25/60 died; toxic symptoms: piloerection,
drooling, hypothermia, abdominal posture,
tremor, and diarrhea; dose (mg/kg), dead nats
per dose: 10.6-0/10; 13.8-1/10; 17.9-1/10;
23.3-4/10; 30.3-9/10; 39.7-10/10 | animals acclimated to environment for 1
week before testing; 6 groups of 10 rats
each; fasted 16 hours before dosing; | Kishida
Chemical Co.,
Ltd. | Kitagawa H, Saito H, Sugimoto T, Yanaura S, Kitagawa H, Hosokawa T, Sakamoto K. 1982. Effects of diiospropyl-1,3-dithiol-2-ylidene malonate (NKK-105) on acute toxicity of various drugs and heavy metals. J Toxicol Sci 7(2):123-34. Chiba University: Hoshi College of Pharmacy; Showa University Japan | | Mercury II chloride | 1 | 32 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 10, 15, 25, 40, 60, 100 mg/kg | IS mg/kg: 0/3 dead; 25mg/kg: 0/3 dead; 40 mg/kg: 3/3 dead; 60 mg/kg: 3/3 dead; 6/12 rats dead; LD50 from 12 rats used; LD50 recalculated using US EPA Benchmark Dose soft-ware; Lorke used data from 10 and 100 mg/kg in range finder for all animal groups; omitted this data in recalculation; orginial LD50 from Lorke = 3 me/kg 15 mg/kg: 1/11 dead; 25mg/kg: 1/11 dead; | acclimated for 5 days; observed for 14 days; 4 groups used for each dose (1, 2, 3, 5 animals per group; total of 11 rats per dose; range finder: 10 mg/kg - 0/3 dead; 100 mg/kg - 3/3 dead; 100 mg/kg - 3/3 dead; 9 rats in range finder | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Mercury II chloride | 1 | 39 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 10, 15, 25, 40, 60, 100 mg/kg | 15 mg/kg: 1/11 dead; 25mg/kg: 1/11 dead; 40 mg/kg: 71/11 dead; 60 mg/kg: 10/11 dead; 61 mg/kg: 10/11 dead; 19/44 rats dead; LD50 from 44 rats used; LD50 froealculated using US EPA Benchmarl Dose software; Lorke used data from 10 and 100 mg/kg in range finder for all animal groups, omitted this data in recalculation; Orginial LD50 from Lorke = 37 mg/kg; this value based on accumulated data from 4 different test rouse. | acclimated for five days; observed for
14 days; 4 groups used for each dose (1,
2, 3, 5 animals per group; total of 11 rats
per dose; range finder showed: 10 mg/kg
- 0/3 dead; 100 mg/kg - 3/3 dead; 1000
mg/kg - 3/3 dead; 9 rats in range finder | | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275-288. Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Mercury II chloride | 1 | 40 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 10, 15, 25, 40, 60, 100 mg/kg | 15 mg/kg: 1/5 dead; 25mg/kg: 1/5 dead; 40 mg/kg: 3/5 dead; 60 mg/kg: 5/5 dead; 10/20 rats dead; LDS0 based on 20 rats used; LDS0 recalculated using US EPA Benchmark Dose software; Lorke used data from 10 and 100 mg/kg in range finder for all animal groups; omitted this data in recalculation; orginial LDS0 from Lorke = 32 mg/kg | | | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|-----------------------------|--|---|---|---|---|---| | Mercury II chloride | 1 | 49 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 10, 15, 25, 40, 60, 100 mg/kg | 15 mg/kg; 0/1 dead; 25mg/kg; 0/1 dead; 40
mg/kg; 0/1 dead; 60 mg/kg; 1/1 dead; 1/4
rats dead; LD50 from 4 rats used; T306 | acclimated for five days; observed for
14 days; 4 groups used for each dose (1,
2, 3, 5 animals per group; total of 11 rats
per dose; range finder showed: 10 mg/kg
- 0/3 dead; 1000 mg/kg - 3/3 dead; 1000
mg/kg - 3/3 dead; 9 rats in range finder | N A | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Mercury II chloride | 1 | 50 | 40 - 63 | Thompson and Weil;
1952; method
of
moving averages | albino rats; 18
weeks | female | oral; stomach
tube | 1 mL/200 g bw | observed after 8 days after single oral administration | 6 dose levels per group, 6 rats per group;
36 rats used | NA | Kostial K, Kello D, Jugo S, Rabar I, Maljkovic, T. 1978. Influence of age on metal metabolism and toxicity. Environ Health Perspect 25:81-8.
Yugoslav Academy of Sciences and Art, Zagreb, Yugoslavia | | Mercury II chloride | 1 | 50 | 43 - 59 | Thompson and Weil;
1952; method of
moving averages | albino rats; 54
weeks | female | oral; stomach
tube | 1 mL/200 g bw | observed after 8 days after single oral administration | 6 dose levels per group, 6 rats per group;
36 rats used | NA | Kostial K, Kello D, Jugo S, Rabar I, Maljkovic, T. 1978. Influence of age on metal metabolism and toxicity. Environ Health Perspect 25:81-86.
Yugoslav Academy of Sciences and Art, Zagreb, Yugoslavia | | Mercury II chloride | 1 | 51 | 39 - 66
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | male | oral gavage | single dose | 14 day observation; toxicity symptoms:
posture, respiratory effects, lethargy,
abnormal gait, prostrate coma, salivation;
time to onset of signs < 1 day; duration of
signs 5 days | 3 dose levels (5 male each); 15 rats
used; OECD TG401 (1981) followed for
experimental procedures; 8 rats dead
(average per test) | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA,
Pelling D, Tomlinson NJ, Walker AP. 1990. Jul. The International
Validation Of A Fixed-Dose Procedure As An Alternative To The
Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | Mercury II chloride | 1 | 52 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 10, 15, 25, 40, 60, 100 mg/kg | 15 mg/kg: 0/2 dead; 25mg/kg: 0/2 dead; 40 mg/kg: 1/2 dead; 60 mg/kg: 1/2 dead; 2/8 rats dead, LD50 based on 8 rats used; LD50 recalculated using US EPA Benchmark Does software; Lorke used data from 10 and 100 mg/kg in range finder for all animal groups; omitted this data in recalculation; orginial LD50 from Lorke – 50 mg/kg | acclimated for five days; observed for 14 days; 4 groups used for each dose (1, 2, 3, 5 animals per group; total of 11 rats per dose; range finder showed: 10 mg/kg - 0/3 dead; 100 mg/kg - 3/3 dead; 1000 mg/kg - 3/3 dead; 9 rats in range finder | NΔ | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275-288. Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Mercury II chloride | 1 | 92 | 77 - 108 | Thompson and Weil;
1952; method of
moving averages | albino rats; 6 weeks | female | oral; stomach
tube | 1 mL/200 g bw; 6 dose
levels in each group | observed after 8 days after single oral administration | 6 dose levels per group, 6 rats per group;
36 rats used | NA | Kostial K, Kello D, Jugo S, Rabar I, Maljkovic, T. 1978. Influence of age on metal metabolism and toxicity. Environ Health Perspect 25:81-86.
Yugoslav Academy of Sciences and Art, Zagreb, Yugoslavia | | Mercury II chloride | 1 | 160
(outlier) | 119 - 235
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | female | oral gavage | single dose | 14 day observation; toxicity symptoms:
posture, respiratory effects, lethargy,
abnormal gait, prostrate coma, salivation;
time to onset of signs < 1 day; duration of
signs 5 days | 3 dose levels (5 female each); 15 rats
used; OECD TG401 (1981) followed for
experimental procedures; 8 rats dead
(average per test) | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA,
Pelling D, Tomlinson NJ, Walker AP. 1990. Jul. The International
Validation Of A Fixed-Dose Procedure As An Alternative To The
Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | Methanol | 5628 | 5628 | 4613 - 6866 | NA | rats | NA | oral | NA | NA | reference in Russian; was also cited in
1983/84 RTECS but value was different
from that used by RC and reference was
not provided by ZEBET | NA | RIECS REFERENCE: CODEN: GTP2AB Bibliographic Data:
Gigiena Truda i Professional'nye Zabolevaniya. Labor Hygiene and
Occupational Diseases. (I/O MezhdunarodnayaKniga, 113095 Moscow.
USSR) V.1-36, 1957-1992. For publisher information, see MTPEEI
CODEN Reference: 19(11), 27, 1975 | | Methanol | 5628 | 5890
(7.4 mL/kg; used
density of 0.796 to
convert to mg/kg) | 4776 - 7244
(95% CL; 6.0 - 9.1
mL/kg) | Litchfield and
Wilcoxon method and
probit analysis | Sprague-Dawley
rats; 16-50 g; 14
days | male and
female | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; 6-12 rats of both sexes
used for studies; solvent used in
undiluted form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL | | Methanol | 5628 | 7005
(8.8 mL/kg; used
density of 0.796 to
convert to mg/kg) | 5731 - 8597
(95% CL; 7.2 -
10.8 mL/kg) | Litchfield and
Wilcoxon method and
probit analysis | Sprague-Dawley
rats; 300-470 g;
older adult | male | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; groups of 6 rats used for
the studies; solvent used in undiluted
form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, II. | | Methanol | 5628 | 7400 | NA | NA | rats; 150-250 g; 70-
100 days | male
(predominat
ely) | oral | NA | observed for 6 days | 18 hour fasting before dosing | NA | Welch, H, Slocum GG. 1943. Relation of length of carbon chain to the primary and functional toxicities of alcohols. J Lab Chem Med 28:1440-1445. U.S. FDA, Washington, D.C. | | Methanol | 5628 | 10348
(13.0 mL/kg; used
density of 0.796 to
convert to mg/kg) | 9472 - 11303
(95% CL; 11.9 -
14.2 mL/kg) | Litchfield and
Wilcoxon method and
probit analysis | Sprague-Dawley
rats; 80-160 g;
young adult | male | oral | solvent used in undiluted form | animals observed for a week after medication | nonfasted rats; groups of 6 rats used for
the studies; solvent used in undiluted
form | analytical
grade meeting
A.C.S.
specifications | Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704. Abbott Laboratories, Chicago, IL | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|---|--|--|--|--------------------|--|--|--|--|---------------------------------|--| | Methanol | 5628 | 12086 - A
11303 - B
(A = 15.28 mL/kg;
B = 14.29 mL/kg;
used density of
0.791 for conversion
to mg/kg) | NA | A= Behrens (1929)
B = Bliss (1938) | rats | NA | oral | NA | NA | 40 - 90 animals used; NICEATM used value B since authors stated it was more accurate | NA | Deichmann WB, Mergard EG. 1948. Comparative evaluation of methods employed to express the degree of toxicity of a compound. J Ind Hyg Toxicol 30:373-378. Medical College, Albany, NY, University of Cincinnati, Cincinnati, OH | | Methanol | 5628 | 12880 | 11440 - 14460
(95% probability;
+/- 1.96 S.D. slope
= 8.53) | probits (Bliss) | Wistar albino rats;
90-120 g | male | oral; stomach
tube; single
doses | 50% concentration in water;
largest dose given was 50
g/kg | most deaths occurred in 2 days; all deaths occurred in 14 days | groups of 10 animals; 10 animals per
dose | purified
commercial
grade | Smyth HF Jr, Seaton J, Fischer, L. 1941. The single dose toxicity of some glycols and derivatives. J Ind Hyg Toxicol 23:259-268. Mellon Institute, Pittsburgh, PA (This was the value used by the RC [from 1977 RTECS]). | | Nicotine | 50 | 50 - 60 | NA | NA | rats | NA | oral | NA | NA | reference is secondary; assumed to be values from Lehman (1951) | NA | RTECS
REFERENCE-SECONDARY SOURCE CODEN: FMCHA2
Bibliographic Data: Farm Chemicals Handbook. (Meister Pub., 37841
Euclid Ave., Willoughy, OH 44094) CODEN Reference: -,C219,1991; | | Nicotine | 50 | 50 - 60 | NA | NA | rats | NA | oral; stomach
tube | NA | clonic convulsions; onset within minutes;
paralysis of respiratory muscles and death | information from the laboratories of
Division of Pharmacology, U.S. FDA.;
fasted animals | NA | Lehman AJ. 1951. Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides. Quarterly Bulletine (Association of Food and Drug Officials of the United States). Vol. 15:122-133. U.S. FDA | | Nicotine | 50 | 68 | 41 -129
(95% CL; slope =
3.0 [S.E. 0.8]) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | male | oral gavage | single dose | 14 day observation; toxicity symptoms:
Ptosis, posture, respiratory effects, lethargy,
abnormal gait, tremors, convulsions,
prostrate coma; time to onset of signs <
1day; duration of signs 3 days; 13 rats dead
(average ne test) | 3 dose levels (5 male each); 15 rats
used; OECD TG401 (1981) followed for
experimental procedures | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA,
Pelling D, Tomlinson NJ, Walker AP. 1990. Jul. The International
Validation Of A Fixed-Dose Procedure As An Alternative To The
Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | Nicotine | 50 | 70 | 49 - 109
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | male and
female | oral gavage | single dose | 14 day observation, toxicity symptoms:
Ptosis, posture, respiratory effects, lethargy,
abnormal gait, tremors, convulsions,
prostrate coma; time to onset of signs <
1day; duration of signs 3 days; 13 rats dead
(average ner test) | 3 dose levels (5 male each and 5 female); 30 rats used; OECD TG401 (1981) followed for experimental procedures | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA, Pelling D, Tomlinson NJ, Walker AP, 1990. Jul. The International Validation Of A Fixed-Dose Procedure As An Alternative To The Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | Nicotine | 50 | 70 | 51 - 96
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley
rats; 190-300 g | female | oral gavage | single dose | 14 day observation; toxicity symptoms:
motor activity decrease, respiratory effects,
tremors, blanching, piloerection, ataxia,
convulsions, extension of the limbs; time to
onset of signs < 1day; duration of signs 5
days; animals fasted 16 -20 hours before
administration | UDP Test | NA | Yam J, Reer PJ, Bruce RD. 1991. Comparison of the up-and-down method and the fixed-dose procedure for acute oral toxicity testing. Food Chem Toxicol 29(4):259-264. The Procter and Gamble Co., Cincinnati, OH | | Nicotine | 50 | 71 | 42 - 128
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | female | oral gavage | single dose | 14 day observation; toxicity symptoms: Ptosis, posture, respiratory effects, lethargy, abnormal gait, tremors, convulsions, prostrate coma; time to onset of signs < 1day; duration of signs 3 days; 13 rats dead (average ner test) | 3 dose levels (5 female each); 15 rats
used; OECD TG401 (1981) followed for
experimental procedures | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA,
Pelling D, Tomlinson NJ, Walker AP. 1990. Jul. The International
Validation Of A Fixed-Dose Procedure As An Alternative To The
Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | Paraquat | 57 | 57 | NA | NA | rats | NA | oral | NA | NA | NA | NA | RTECS REFERENCE CODEN: RREVAH Bibliographic Data: Residue Reviews. (Springer-Verlag New York, Inc., Service Center, 44 Hartz Way, Secaucus, NJ 07094) VI. 1962-CODEN Reference: 10,97,1965 Bailey GW, White JL. 1965. Herbicides: a compilation of their physical, chemical, and biological properties. Journal paper no. 2413. Purdue University Agricultural Experiment Station. Residue Reviews 10:7-122. | | Paraquat | 57 | 95 | 79-114;
(95 % CL) | Litchfield and
Wilcoxon method
(1949) | Wistar rats; 292 +/- | male | oral intubation | single dose | observe several times daily and at least once
on weekends for 30 days; most of the rats
that died did so within 5 days of
administration; weight loss, diarrhea,
piloerection and red drainage around mouth,
eyes, and nose | used 29 paraquat-dichloride | Ortho
Chemical Co. | Sharp CW, Ottolenghi A, Posner HS. 1972. Correlation of paraquat toxicity woth tissue concentrations and weight loss of the rat. Toxicology and Appied Pharmacology 22:241-251. <i>NIEHS, RTP, NC USA</i> | | Paraquat | 57 | 100 | 85 - 117
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min. wt. = 175 g;
min. age of 90 days | male | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 14 days | 50 rats tested | technical
grade | Gaines TB. 1969. Acute toxicity of pesticides. Toxicol Appl Pharmacol 14(3):515-34. U.S. Dept. of Health, Education, and Welfare, Atlanta, GA | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|---|--|--------------------|--|---|--|---|--|---| | Paraquat | 57 | 110 | 90 - 134
(95% CL) | Litchfield and
Wilcoxon method
(1949) | Sherman strain rats;
min. wt. = 200 g;
min. age of 90 days | female | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 13 days | | technical
grade | Gaines TB. 1969. Acute toxicity of pesticides. Toxicol Appl Pharmacol 14(3):515-34. U.S. Dept. of Health, Education, and Welfare, Atlanta, GA | | Paraquat | 57 | 112
(paraquat ion per kg
bw) | 104-122;
(95% CL) | Thompson (1947);
moving average
interpolation method | rats; 130-160 g | male and
female | oral; in food | single dose; mixed salt of
paraquat in food with 20%
malt extract and fed to rats | fasted overnight; observed up to 12 days | 6 rats per group | 99.9% pure
paraquat
dichloride | Clark DG, McElligott TF, Hurst EW. 1966. The toxicity of paraquat. Br J
Ind Med 23:126-132.
Imperial Chemical Industries Limited, Cheshire, UK | | Paraquat | 57 | 115 | 90-150;
(95% CL) | Litchfield and
Wilcoxin method
(1949) | Sprague Dawley rat;
290 +/- 37 g | male | oral intubation | single dose | observe several times daily and at least once
on weekends for 30 days; most of the rats
that died did so within 5 days of
administration; weight loss, diarrhea,
piloerection and red drainage around mouth,
eyes, and nose | used 29 paraquat-dichloride | | Sharp CW, Ottolenghi A, Posner HS. 1972. Correlation of paraquat toxicity woth tissue concentrations and weight loss of the rat. Toxicology and Appied Pharmacology 22:241-251. NIEHS, RTP, NC USA | | Paraquat | 57 | 141 (paraquat
ion per kg bw) | 140-142
(95% CL) | Thompson (1947);
moving average
interpolation method | rats; 130-160 g | male and
female | oral; in food | single dose; mixed salt of
paraquat in food with 20%
malt extract and fed to rats | fasted overnight; observed up to 12 days | 6 rate per group | 99.9% pure
paraquat
dimethosulfat
e | Clark DG, McElligott TF, Hurst EW. 1966. The toxicity of paraquat. Br J Ind Med 23:126-132. Imperial Chemical Industries Limited, Cheshire, UK | | Paraquat | 57 | 150
(paraquat ion per kg
bw) | 139-162
(95% CL) | Thompson (1947);
moving average
interpolation method | rats; 150-205 g | male and
female | oral; in food | single dose; mixed salt of
paraquat in food with 20%
malt extract and fed to rats | fasted overnight; observed up to 12 days | 10 rats per group | 99.9% pure
paraquat
dichloride | Clark DG, McElligott TF,
Hurst EW. 1966. The toxicity of paraquat. Br J Ind Med 23:126-132. Imperial Chemical Industries Limited, Cheshire, UK | | Parathion | 2 | 1.8 (actual value) | 1.26 - 2.57 (95%
CL; slope = 1.5
[1.0 - 2.25 95%
CL]) | Litchfield and
Wilcoxin method
(1949) | Osborne-Mendel (?) | female | oral | 5 dose levels; constant vol. dose of solvent of 5 mL/kg; single dose; aqueous solution (sodium carboxymethyl-cellulose, 0.5%; NaCl, 0.9%; benzyl alcohol, 0.2% v/v; Tween 80, 0.4%) | observed for 24 hours; deaths infrequent
after 24 hour; onset of anticholinesterase
poisoning syptoms slower with corn oil than
DMSO or aqueous | fasted for 20 hours | NA | RTECS REFERENCE CODEN: TXAP49 Bibliographic Data: Toxicology and Applied Pharmacology. (Academic Press, Inc., 1 E. First St., Duluth, MN 55802) V.1-1959- CODEN Reference: 11, 546, 1967. —Weis LR, Orzel RA. 1967. Some comparative toxicologic and pharmacologic effects of dimethyl sulfoxide as a pesticide solvent. Toxicology and Applied Pharmacology 11:546-557. U.S. FDA. Washington, D.C. | | Parathion | 2 | 2.1 | 1.72 - 2.56
(95% CL; slope =
1.25 [1.01 - 1.55
95% CL]) | Litchfield and
Wilcoxon method
(1949) | Osborne-Mendel (?) | female | oral | 5 dose levels; constant vol.
dose of solvent of 5 mL/kg;
single dose; cmpd dissolved
in DMSO (industrial grade,
99% pure) | observed for 24 hours; deaths infrequent
after 24 hour; onset of anticholinesterase
poisoning syptoms slower with corn oil than
DMSO or aqueous | fasted for 20 hours | NA | Weis LR, Orzel RA. 1967. Some comparative toxicologic and pharmacologic effects of dimethyl sulfoxide as a pesticide solvent. Toxicology and Applied Pharmacology 11:546-557. U.S. FDA, Washington, D.C. | | Parathion | 2 | 3 | NA | NA | rats | NA | oral; stomach
tube | NA | generalized fibrillary tremors, salivation,
lacrimation, diarrhea, and convulsions; onset
within 1 hour | information from the laboratories of
Division of Pharmacology, U.S. FDA.;
fasted animals; LD50 value is from
research by Frawley et al. 1952 | NA | Lehman AJ. 1951. Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides. Quarterly Bulletine (Association of Food and Drug Officials of the United States). Vol.15:122-133. U.S. FDM | | Parathion | 2 | 3 | +/- 0.25
(S.E.) | Litchfield and Fertig
(1941) | Osborne-Mendel
strain rats; 180-200
g | female | oral; stomach
tube | cmpd in corn oil | toxicity symptoms: muscle fibrillation, red
colored lacrimation, diarrhea, dyspnea,
convulsions; respiratory paralysis, anoxia,
terminal convulsion | rats fasted for 24 hours; LD50 value was used in Lehman 1951 | NA | Frawley JP, Hagan EC, Fitzhugh OG. 1952. A comparative pharmacological and toxicological study of organic phosphate-anticholinesterase compounds. J Pharmacol Exp Ther 152:156-165. U.S. FDA, Washington, D.C. | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|--------------------|--|---|--|---|--------------------|---| | Parathion | 2 | 3.6 | 3.2 - 4.0
(95% CL) | Litchfield and
Wilcoxin method
(1949) | Sherman strain rats;
min. wt. = 200 g;
min. age of 90 days | female | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 3 days | 70 rats tested | technical
grade | Gaines TB. 1960. The acute toxicity of pesticides to rats. Toxicol Appl Pharmacol 2.88-99. U.S. Dept. of Health, Education, and Welfare, Savannah, GA Mattson AM, Spillane JT, Pearce GW. 1955. Dimethyl 2,2-dichlorvinyl phosphate (DDVP), an organic phosphorous compound highly toxic to insects. J Agr Food Chem 3:319-321. Communicable Disease Center, Savannah, GA | | Parathion | 2 | 3.6 | 3.2 - 4.0
(95% CL) | Litchfield and
Wilcoxin method
(1949) | Sherman albino rats | female | oral; stomach
tube | NA | NA | LD50 value from research in Gaines | NA | Durham WF, Gaines TB, McCauley RH, Sedlak VA, Mattson MA, Hayes WJ. 1957. Studies on the toxicity of 0,0-dimethyl-2,2-dichlorovinyl phosphate (DDVP). AMA Arch Ind Health 15:430-439. U.S. Dept. of Health, Education and Welfare, Savannah, GA | | Parathion | 2 | 4.7 | 3.98 - 5.55
(95% CL; slope =
1.21 [0.98 - 1.50
95% CL]) | Litchfield and
Wilcoxin method
(1949) | Osborne-Mendel (?) | female | oral | 5 dose levels; constant vol.
dose of solvent of 5 mL/kg;
single dose; cmpd dissolved
in corn oil mixture (90%
corn oil, 10% N, N-dimethyl
formamide) | observed for 24 hours; deaths infrequent
after 24 hour; onset of anticholinesterase
poisoning syptoms slower with corn oil than
DMSO or aqueous | fasted for 20 hours | NA | Weis LR, Orzel RA. 1967. Some comparative toxicologic and pharmacologic effects of dimethyl sulfoxide as a pesticide solvent. Toxicology and Applied Pharmacology 11:546-557. U.S. FDA, Washington, D.C. | | Parathion | 2 | 6 | 4.6 - 7.8
(95% CL) | Litchfield and
Wilcoxin method
(1949) | CD (COBS) rats
Charles River,
France; 120-200 g | female | oral gavage | cmpd dissolved in 1 mL
methylene chloride;
emulsified in 10% arabic
gum solution with Tween 80;
dose 5 mL/kg | LD50 determined after 10 days of observation | 5 dose levels; 10 female per dose; 50 rats used | 95+% pure | Pasquet J, Mazuret A, et al. 1976. Acute oral and percutaneous toxicity of phosalone in the rat, in comparison with azinphosmethyl and parathion. Toxicol Appl Pharmacol 37(1):85-92. Rhone-Poulenc, France | | Parathion | 2 | 10 | 8 - 13 (95%
CL) | Litchfield and
Wilcoxin method
(1949) | CD (COBS) rats
Charles River,
France; 120-200 g | male and
female | oral gavage | cmpds dissolved in 1 mL
methylene chloride and
emulsified in 10% arabic
gum solution with Tween 80;
dose 5mL/kg | LD50 determined after 10 days of observation | 5 dose levels; 10 male and 10 female per
dose; 100 rats used | 95+% pure | Pasquet J, Mazuret A, et al. 1976. Acute oral and percutaneous toxicity of phosalone in the rat, in comparison with azinphosmethyl and parathion. Toxicol Appl Pharmacol 37(1):85-92. Rhone-Poulenc, France | | Parathion | 2 | 13 | 10 - 17
(95% CL) | Litchfield and
Wilcoxin method
(1949) | Sherman strain rats;
min. wt. = 175 g;
min. age of 90 days | male | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival 3 days | 50 rats tested | technical
grade | Gaines TB. 1960. The acute toxicity of pesticides to rats. Toxicol Appl Pharmacol 2:88-99. U.S. Dept. of Health, Education, and Welfare. Savannah, 6A AM, Spillane JT, Pearce GW. 1955. Dimethyl 2,2-dichlorvinyl phosphate (DDVP), an organic phosphorous compound highly toxic to insects. J Agr Food Chem 3:319-321. Communicable Disease Center, Savannah, GA | | Parathion | 2 | 15 | 10.2 - 16.5
(95% CL) | Litchfield and
Wilcoxin method
(1949) | Sherman albino rats | male | oral; stomach
tube | NA | NA | LD50 value from research in Gaines | NA | Durham WF, Gaines TB, McCauley RH, Sedlak VA, Mattson MA, Hayes WJ. 1957. Studies on the toxicity of 0,0-dimethyl-2,2-dichlorovinyl phosphate (DDVP). AMA Arch Ind Health 15:340-349. U. S. Dept. of Health. Education and Welfore. Seavamah. GA | | Parathion | 2 | 16 | 13 - 20
(95% CL) | Litchfield and
Wilcoxin method
(1949) | CD (COBS) rats
Charles River,
France; 120-200 g | male | oral gavage | cmpds dissolved in 1 mL
methylene chloride and
emulsified in 10% arabic
gum solution with Tween 80;
dose 5 mL/kg | LD50 determined after 10 days of observation | 5 dose levels; 10 male per dose; 50 rats used | 95+% pure | Pasquet J, Mazuret A, et al. 1976. Acute oral and percutaneous toxicity of phosalone in the rat, in comparison with azinphosmethyl and parathion. Toxicol Appl Pharmacol 37(1):85-92. Rhone-Poulenc, France | | Parathion | 2 | 30 | +/- 3.6
(S.E.) | Litchfield and Fertig
(1941) | Osborne-Mendel
strain rats; 180 -
200 g | male | oral; stomach
tube | empd in corn oil; | toxicity symptoms: muscle fibrillation, red
colored lacrimation, diarrhea, dyspnea,
convulsions; respiratory paralysis, anoxia,
terminal convulsion | rats fasted for 24 hours; | NA | Frawley JP, Hagan EC, Fitzhugh OG, 1952. A comparative pharmacological and toxicological study of organic
phosphate-anticholinesterase compounnds. J Pharmacol Exp Ther 152:156-165. U.S. F.D.A, Washington, D.C. | | Phenobarbital | 162 | 162 | +/- 14 | NA | Wistar rats; adult | NA | oral | NA | NA | information from: drug applications
from pharmaceutical manufacturers, the
literature, and FDA labs | NA | RTECS REFERENCE CODEN: TXAP19 Bibliographic Data: Toxicology and Applied Pharmacology. (Academic Press, Inc., I. E. First St., Duluth, MN 55802) V.1-1959- CODEN Reference: 18,185,1971 | | Phenobarbital | 162 | 220 | NA | NA | MJ rats; 80 - 100
days | NA | oral | NA | NA | information from: drug applications
from pharmaceutical manufacturers, the
literature, and FDA labs | | Goldenthal El. 1971. A compilation of LD50 values in newborn and adult animals. Toxicology and Applied Pharamacology 18:185-207.
Bureau of Drugs, Food and Drug Administration, Dept. of Health,
Education, and Welfare, Rockville, MD. | | Phenobarbital | 162 | 318 | +/- 23
(S.E.) | Miller and Tainter
(1944) | Charles River CD
and Sprague-
Dawley rat strains;
> 100 g; adult | NA | oral intubation;
up to 50 mL/kg | NA | rats observed for 7 days; observed up to 14
days when heavy metals or other cmpds that
produce latent death were investigated | fasted overnight | NA | Yeary RA, Benish RA, Finkelstein M. 1966. Acute Toxicity of Drugs in
Newborn Animals. Journal of Pediatrics 69 (4):663-667.
Dept. of Veterinary Preventive Medicine, Ohio State University,
Columbus, OH | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|---|--|---|---|--------------------|--|--|---|--|--|---| | Phenol | 317 | 317
(0.30 cc/kg of drug
lethal to 50% of
rats; density =
1.055) | NA | graphically | white rats | NA | oral; stomach
tube | 5% ethylene glycol added to
phenol to liquify it so that it
would pass through the
stomach tube | most rats died within 2 - 6 hour; practically
all dead within 8 - 12 hour; convulsions
began several minutes after dosing and
continued for several hours | NA | NA | RTECS REFERENCE CODEN: GISAAA Bibliographic Data: Gigiena i Sanitariya. For English translation, see HYSAAV. (V/O Mechdunarodnaya Kniga, 113095 Moscow, USSR) V.I-1936-CODEN Reference: 41(6), 103,1976. Brown HW, Lamson PD. 1935. Oral Toxicity of Ortho-n-alkylphenols to White Rats. Proc Soc Exp Biol Med 32:592-594. | | Phenol | 317 | 340 | NA | NA | Wistar rats; 100-
200 g | male and
female | oral | 20% aqueous emulsion 0.3,
0.4, 0.5 g/kg doses | 45 rats used; 30 dead; death within 1 hour;
twitching, weak pulse and respiration,
salivation, dyspnea | female used) | | Deichmann WB, Witherup S. 1944. Phenol Studies VI: the acute and comparative toxicity of phenol and o-, m-, and p-cresols for experimental animals. J of Pharmacol and Exp Therapeutics 80:233-240. College of Medicine, University of Cincinnati, Cincinnati, OH. | | Phenol | 317 | 400 | 297 - 539
(95% CL) | Dixon (1965) and
Bruce (1985) | Fischer 344 rats; 77
days old at test | female | oral gavage | in deionized water;
maximum volume dose
10mL/kg; 5 dose levels: 0,
12, 40, 120, 224 mg/kg;
single dose | 7 day survival time | fasted overnight; initial dose levels were
100, 1000, and 5000 mg/kg; subsequent
doses selected by up-and-down method
(Bruce, 1985, 1987); 5 groups of 8 rats
each; 40 rats used; 7-15 rats used in
first LD50 estimate | grad_; 99+%
pure; Aldrich
Chemical Co. | Berman E, Schlicht M, Moser VC, MacPhail RC. 1995. A
multidisciplinary approach to toxicological screening: I. Systemic
toxicity. J Toxicol Environ Health 45(2): 127-43.
Health Effects Res. Lab., U.S.EPA, Research Triangle Park, NC | | Phenol | 317 | 445 | NA | Probit method | Sprague-Dawley
rats; 190-200 g | female | oral | geometric progression of 14
for dosing; in water or neat | 9 dead; observed for 14 days | non-fasted; 4 groups of 5 female; 20 rats used | Polysciences,
Inc.
Warrington,
PA | Thompson ED, Gibson DP. 1984. A method for determining the maximum tolerated dose for acute in vivo cytogenetic studies. Food Chem Toxicol 22(8):665-76. The Procter and Gamble Co., Cincinnati, OH | | Phenol | 317 | 512 | 455 - 568 | NA | rats; 220 +/- 40 g | NA | oral;
intragastric | NA | NA | (source of information not provided) | NA | Izmerov NF, Sanotsky IV, Sidorov KK. 1982. Toxicometric Parameters of
Industrial Toxic Chemicals under Single Exposure. International Register
of Potentially Toxic Chemicals (IRPTC). United Nations Environment
Programme (UNEP). Centre of International Projects, GKNT. Moscow,
Puseria | | Phenol | 317 | 520 | NA | Probit method | Sprague-Dawley
rats; 190-200 g | male | oral | geometric progression of 14
for dosing; in water or neat | 10 dead; observed for 14 days | non-fasted; 3 groups of 5 male; 1 group
of 10 male; 25 rats used | Polysciences,
Inc.
Warrington,
PA | Thompson ED, Gibson DP. 1984. A method for determining the maximum tolerated dose for acute in vivo cytogenetic studies. Food Chem Toxicol 22(8):665-76. The Procter and Gamble Co., Cincinnati, OH | | Phenol | 317 | 530 | NA | NA | Wistar rats; 100-
200 g | male and
female | oral | 2% aqueous solution; 0.4,
0.5, 0.6, 0.7, 0.8 g/kg doses | 45 rats used; 32 dead; death within 3 hours;
twitching, weak pulse and respiration,
salivation, dyspnea | 45 rats used (equal numbers of male and female used) | | Deichmann WB, Witherup S. 1944. Phenol Studies VI: the acute and comparative toxicity of phenol and o-, m-, and p-cresols for experimental animals. J of Pharmacol and Exp Therapeutics 80:233-240. College of Medicine, University of Cincinnati, Cincinnati, OH. | | Phenol | 317 | 530 | NA | NA | Wistar rats; 100-
200 g | male and
female | oral | 5% aqueous solution; 0.4,
0.5, 0.6, 0.7 g/kg doses | 45 rats used; 27 dead; death within 80 minutes twitching, weak pulse and respiration, salivation, dyspnea | 45 rats used (equal numbers of male and female used) | | Deichmann WB, Witherup S. 1944. Phenol Studies VI: the acute and comparative toxicity of phenol and o-, m-, and p-cresols for experimental animals. J of Pharmacol and Exp Therapeutics 80:233-240. College of Medicine. University of Cincinnati. Cincinnati. OH. | | Phenol | 317 | 540 | NA | NA | Wistar rats; 100-
200 g | male and
female | oral | 10% aqueous emulsion 0.5,
0.6, 0.7, 0.8 g/kg doses | 40 rats used; 28 dead; death within 120 minutes; twitching, weak pulse and respiration, salivation, dyspnea | 40 rats used (equal numbers of male and female used) | Merck reagent
quality | Deichmann WB, Witherup S. 1944. Phenol Studies VI: the acute and comparative toxicity of phenol and o-, m-, and p-cresols for experimental animals. J of Pharmacol and Exp Therapeutics 80:233-240. College of Medicine, University of Cincinnati, Cincinnati, OH. | | Phenol | 317 | 550 - A
530 - B | NA | A= Behrens (1929)
B = Bliss (1938) | rats | NA | oral | 2% aqueous solution | NA | 41 - 90 animals used; NICEATM used value B since authors stated it was more accurate | NA | Deichmann WB, Mergard EG. 1948. Comparative evaluation of methods employed to express the degree of toxicity of a cmpd. J Ind Hyg Toxicol 30:373-378. Alibany Medical College, Albany, NY, University of Cincinnati, Cincinnati, OH | | Phenol | 317 | 580 - A
540 - B | NA | A= Behrens (1929)
B = Bliss (1938) | rats | NA | oral | 10% aqueous solution | NA | 42 - 90 animals used; NICEATM used value B since authors stated it was more accurate | NA | Deichmann WB, Mergard EG. 1948. Comparative evaluation of methods employed to express the degree of toxicity of a compound. J Ind Hyg Toxicol 30:373-378. Albany Medical College, Albany, NY; University of Cincinnati, CH. | | Phenol | 317 | 550 - 650 | NA | NA | Normal albino rats | male and
female | oral | single doses in mg/kg: 400,
450, 500, 550, 600, 650, 700;
phenol as 5% aqueous
solution | dose (mg/kg), percent mortality, minutes till death: 400, 10%, 20; 450, 20%, 10 to 80; 500, 30%, 10 to 30; 500, 30%, 10 to 30; 550%, 5 to 90; 600, 60%, 3 to 8; 650, 60%, 4 to 60; 700, 90%, 4 to 50; 500 mg/kg repeated in reference paper | control; 10 rats per group; 80 rats used | NA | Deichmann W, Oesper P. 1940. Ingestion of phenol: effects on the albino
rat. Industr Med 9:296-298. | | Phenol | 317 | 650 | 490 - 860
(95% CL) | NA | albino rats | male | oral; stomach
intubation | 4 doses: 200, 398, 795, 1580
mg/kg; single dose | observed for 14 days; 9 of 20 rats dead; dose
(mg/kg), rats dead: 200 - 0/5; 398 - 0/5; 795 -
4/5 (dead within 1 day after dosing); 1580 -
5/5 (dead < 2 hour after dosing) | 4 groups of 5 rats; 20 rats used; test procedures were those outlined in the Federal Hazardous Substances Act (FSHA) as published in the Federael Register 81/261, pages 7333-7341, entitled "Part 191 - Hazardous Substances: Definitions and Procedural and Intermetive Regulations: Final Order." | Fisher | Flickinger CW. 1976. The benzenediols: catechol, resorcinol and hydroquinone — a review of the industrial toxicoloogy and current industrial exposure limits. Am Ind Hyg Assoc J 37:596-606. Koppers Company, Inc., Monroeville, PA | | Phenol | 317 | 1030 | 940 - 1120 | NA | albino rats; 90-120
g | male | oral; stomach
tube | 5% phenol solution in water;
single dose | observed for 14 days; 10 rats dead | non-fasted; 4 groups of 10 rats | rwagent grade | from EPA TSCATS database; Acute Toxicity of Phenol (1949), EPA Document No. 86-870001405 Fiche No. OTS0515567 Mellon Institute of Industrial research, Univ. of Pittsburgh, Pittsburgh, PA | | CHEMICAL ¹ | mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |----------------------------|-------------------------------|--|--|--|---|--------------------|--|--|---|---|--------------------|---| | Phenol | 317 | 1460 - A
1500 - B | NA | A= Behrens (1929)
B = Bliss (1938) | rats | NA | oral | 10% solution in olive oil | NA | 40 - 90 animals used; NICEATM used value B since authors stated it was more accurate | NA | Deichmann WB, Mergard EG. 1948. Comparative evaluation of methods employed to express the degree of toxicity of a cmpd. J Ind Hyg Toxicol 30.373-378. Albany Medical College, Albany, NY, University of Cincinnati, Cincinnati, OH. | | Phenylthiourea | 3 | 3.1 | NA | NA | rats | | oral | NA | NA | value cited from unknown reference | NA | RIFLES REFERENCE CODENY, JAMPCAS Bibliographic Data: Journal of Medicinal and Pharmaceutical Chemistry, (Washington, DC) (11-5, 1959-62. For publisher information, see JMCMAR. CODEN Reference: 4,109,1961. —— Scheline RR, Smith RL, Williams RT. 1961. The metabolism of arythrioureas — II. The metabolism of ¹⁴ C- and ²⁸ S-labelled 1-phenyl-2-thiourea and its | | Phenylthiourea | 3 | < 21.5 | NA | NA | Fischer rats; 6
weeks | male and
female | oral intubation | NA | observed up to 14 days | NA | NA | The International of Medicinal and Pharmaceutical Chemistry 4(1):109- 134. Linkspecific ACL and to LIKE Carcinogenesis bioassay of environmental chemicals annual progress report NIH-NCI-E-C-72-3252. 5/13/71 – 8/6/73 and Final report NIH- NCI-E-71-2146. Submitted to The National Cancer Institute, National Institutes of Health, Bethesda, MD. 8/15/73 (revised 8/10/73). Litton | | Physostigmine
(Eserine) | 4.5 | 4.5 | NA | NA | rat | NA | oral | NA | NA | NA | NA | Institutes 0 Treating, Declinesta, M.D. 813/73 (EVISEA 310/75); Litton
Blometics, Inc. Bethesda, M.D. 813/73 (EVISEA 310/75); Litton
RTECS REFERENCE Alist M.A. Brufani M. Cesta M.C, Filocamo L,
Gostoli G, Lappa S, et al. 1994. U.S. Patent 5,302,593.
Aminoally/carbamic esters of eseroline suitable for use as cholinesterase
activity inhibitors (April 12, 1994). | | Potassium I chloride | 2600 | 2600 | 2330 - 2900 | Bliss method | Wistar rats; 110-
140 g | male | oral gavage | approximately 5 doses; in
water or oil solution | 14 day observation period; | reference in Czechoslovakian; intro to
reference in English; generally 10
animals per dose; up to 50 rats used | NA | RTECS REFERENCE-CZECHOSLOVAKIAN CODEN: 28ZPAK
Bibliographic Data: "Sbornik Vysledku Toxixologickeho Vysetreni Latek A
Pripravku," Marhold, J.V., Institut Pro Vychovu Vedoucicn Pracovniku
Chemickeho Prumyclu Praha, Czechoslovakia, 1972 CODEN Reference: -
8. 1972 | | Potassium I chloride | 2600 | 3020 | +/- 140
(S.E.) | Croxton (1953) Least
squares linear
regression. | Wistar albino rats;
adult | female | oral; stomach
tube | in distilled water: 0, 2.1, 2.4, 2.7, 3.3, 3.6, and 3.9 g/kg bw doses; volume of 20 mL/kg bw | respiratory failure, convulsions,
gastroenteritis, anorexia, polydipsia,
polyurea, fever; 14 day observation; death
occurred in approximately half the rats | 109 female rats used; fasted for 16 hours | NA | Boyd EM, Shanas MN. 1961. The Acute Oral Toxicity of Potassium
Chloride. Arch Int Pharmacodyn 133:275. Queen's
University, Kingston, Ontario, Canada | | Potassium cyanide | 5 | 5 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 2, 4, 9, 14 mg/kg | 2 mg/kg: 0/11 dead; 4 mg/kg:2/11 dead; 9
mg/kg:10/11 dead; 14 mg/kg:11/11 dead; 23
of 44 rats dead; LD50 based on groups
containing 3 and 5 rats | acclimated for 5 days; observed for 14
days; 4 groups used for each dose (1, 2,
3, 5 animals per group; total of 11 rats
per dose); 9 rats used for initial range
finding | NA | RTECS REFERENCE CODEN: ARTODN Bibliographic Data: Archives of Toxicology. (Springer-Ferlag, Heidelberger Pl. 3, D-1000 Berlin 33, Fed. Rep. Ger.) V.32-1974- CODEN Reference: \$4,275,1983 Lorke D. 1983. A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275-288. Institut für Toxikologie, Wuppertal, Federal Republic of Germany | | Potassium cyanide | 5 | 5 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 2, 4, 9, 14 mg/kg | 2 mg/kg: 0/3 dead; 4 mg/kg: 1/3 dead; 9
mg/kg: 3/3 dead; 14 mg/kg: 3/3 dead; 7 of 12
rats dead; LD50 based on 12 rats used; used
same rats as experiments using 44 or 20 rats | acclimated for 5 days; observed for 14
days; 4 groups used for each dose (1, 2,
3, 5 animals per group; total of 11 rats
per dose); 9 rats used for initial range
finding | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Potassium cyanide | 5 | 5 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 2, 4, 9, 14 mg/kg | 2 mg/kg: 0/5 dead; 4 mg/kg: 1/5 dead; 9
mg/kg: 5/5 dead; 14 mg/kg: 5/5 dead; 11 of
20 rats dead; LD50 based on 20 rats used | acclimated for 5 days; observed for 14
days; 4 groups used for each dose (1, 2,
3, 5 animals per group; total of 11 rats
per dose); 9 rats used for initial range
finding | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Potassium cyanide | 5 | 6 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 2, 4, 9, 14 mg/kg | 2 mg/kg: 0/1 dead; 4 mg/kg: 0/1 dead; 9
mg/kg:1/1 dead; 14 mg/kg:1/1 dead; 2 of 4
rats dead; LD50 based on 4 rats used; used
same rats as experiments using 44 rats | acclimated for 5 days; observed for 14
days; 4 groups used for each dose (1, 2,
3, 5 animals per group; total of 11 rats
per dose); 9 rats used for initial range
finding | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch
Toxicol 54(4):275-288.
Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Potassium cyanide | 5 | 6 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 2, 4, 9, 14 mg/kg | 2 mg/kg: 0/11 dead; 4 mg/kg:2/11 dead; 9
mg/kg:10/11 dead; 14 mg/kg:11/11 dead; 23
of 44 rats dead; LD50 based on all rats used
(44); summary data from four tests; Test 1 =
4 rats; test 2 = 8 rats; test 3 = 12 rats; test 4 =
20 rats | acclimated for 5 days; observed for 14 days; 4 groups used for each dose (1, 2, 3, 5 animals per group; total of 11 rats per dose); 9 rats used for initial range finding | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275-288. Institut fur Toxikologie, Wuppertal. Federal Republic of Germany | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--
--|--|--|--|--------|---|--|--|---|-------------------------------|---| | Potassium cyanide | 5 | 7.26 | 6.50 - 8.09 | Bliss-Probit method | Sprague-Dawley
rats; 5 weeks | male | oral gavage | dissolved in saline; range
(mg/kg) of doses 4.9, 5.8,
7.0, 8.4, 10.1, 12.1 | rats observed at 6 hours after dosing and a once a day for 1-2 weeks; most dead within 3 days; 33/60 rats died; toxic symptoms: decrease in spontaneous movement, abdominal posture, apsychia and hyperventilation within seconds or minutes of all rats dosed with 84 mg/kg or greater, in all dead rats, convulsion due to asphyxia; dose (mg/kg), dead rats per dose: 49-0/10; 58 3/10; 70-5/10; 84-7/10; 101-8/10; 121-10/10 | mortality = 4.9 mg/kg | Wako Pure
Chemicals
Co. | Kitagawa H, Saito H, Sugimoto T, Yanaura S, Kitagawa H, Hosokawa T, Sakamoto K, 1982. Effects of diiospropyl-1,3-dithiol-2-ylidene malonate (NKK-105) on acute toxicity of various drugs and heavy metals. J Toxicol Sci 7(2):123-34. Chiba University: Hoshi College of Pharmacy; Showa University — Japan | | Potassium cyanide | 5 | 9 | NA | Rosiello (1979) and
Bliss (1938) | rats | male | oral | 2, 4, 9, 14 mg/kg | 2 mg/kg: 0/2 dead; 4 mg/kg: 0/2 dead; 9
mg/kg: 1/2 dead; 14 mg/kg: 2/2 dead; 3 of 8
rats dead; LD50 based on 8 rats used | acclimated for 5 days; observed for 14 days; 4 groups used for each dose (1, 2, 3, 5 animals per group; total of 11 rats per dose); 9 rats used for initial range finding | NA | Lorke D. 1983. A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275-288. Institut fur Toxikologie, Wuppertal, Federal Republic of Germany | | Potassium cyanide | 5 | 10 | 8.7 - 11.5
(95% CL) | Litchfield and
Wilcoxin method
(1949) | Sherman strain rats;
min. wt. = 175 g;
min. age of 90 days | male | oral; stomach
tube | chemical in peanut oil; 0.005 mL/g of bw | observed hourly on first day of dosage and
twice a day thereafter until time of death;
max survival = died within 1 hour | 50 rats tested | technical
grade | Gaines TB. 1969. Acute toxicity of pesticides. Toxicol Appl Pharmacol 14(3):515-34. U.S. Dept. of Health, Education, and Welfare, Atlanta, GA | | Potassium cyanide | 5 | 10 | 9 - 12 (95%
CL; slope = 14.5) | Finney (1971) | Crl: CD rats; ave
bw = 243-251 g;
young adult | male | oral;
intragastric
intubation | single dose as suspension in
corn oil (0.1% suspension);
5, 8, 10, 15 mg/kg dose;
dose = 126-377 mL | observed for 14 days; 16 rats dead; all deaths
occurred within 1 hour; convulsions,
tremors, fascilations, gasping, lethargy,
weakness, hyperemia, weight loss | 4 groups of 10 rats | NA | from EPA TSCATS database; INITIAL SUBMISSION: ORAL LD50 TEST OF POTASSIUM CYANIDE IN RATS WITH COVER LETTER DATED 08/10/92; EPA Document No. 88-920009041 Fiche No. OTS0555358; E.I Dupont DeNemours & Co., Inc./Haskell Labs | | Procainamide | 1950 | 1950 | NA | NA | rats | NA | oral | NA | NA | no source given for LDS0 value | NA | RTECS REFERENCE CODEN: CCCCAK Bibliographic Data: Collection of Czechoslovak Chemical Communications. (Academic Press Inc. Ltd., 24-28 Onal Rd., London NWI 7DX, UK) V.I- 1929- CODEN Reference: 42,3628,1977 Protiva M, Valenta V, Trcka V, Hladovec J, Nemec J. 1977. Basic amided of 3,4,5- trimethoxyphenoxyacetic acid; synthesis and phaarmacology of trimethoxamide and analogues. Collection of Czechoslovak Chemical Communications 42:3628-3642. Research Institute for Pharmacy and Biochemistry. Prague. Czechoslovakia | | Procainamide | 1950 | > 2000 | NA | Litchfield and
Wilcoxon method or
Thompson method | Wistar rats | male | oral | single dose | NA | 20 rats used | NA | Turba C, Sanna GP, Bianchi C. 1968. 1: Acute toxicity and general pharmacologic properties of 1,5-dimorpholino-3-(1-naphthyl)-pentane: DA 1686. Arzneimittelforschung Sep. 18(9):1127-1132. LABORATORI RICERCHE ISTITUTIO DE ANGIELL MILANO. ITALY | | Propranolol HCl | 466 | 466 | NA | Litchfield and
Wilcoxon method | Sprague-Dawley rats; 2 months | male | gastric
intubation;
single high oral
doses | NA | determined at 10 days by administering po to groups of 5 animals for each dose a series of doses increasing serially by a factor of 2 | | pharmaceutic
al grade | RTECS REFERENCE CODEN: ARZNAD Bibliographic Data: Arzneimittel-Forschung, Drug Research. (Editio Cantor Verlag, Postfach 1255, W-7960 Aulendorf, Fed. Rep. Ger) VI-1951-CODEN Reference: 35,1236,1985 | | Propylparaben | (mouse
oral)
no rat oral
data | 6332 (mouse) | 5740 - 6984
(S.E.) | NA | dd strain mice | NA | oral | NA | NA | NA | NA | RTECS REFERENCE-MOUSE ORAL Sado I. 1973. Synergistic
toxicity of officially permitted food preservatives. Nippon Elseigaku
Zasshi 28(5):463-476. | | Propylparaben | 6332
(mouse
oral)
no rat oral
data | > 8000
(mouse) | NA | Miller and Tainter
(1944) | uniform strain of
albino mice from a
single source | NA | oral | suspended in 3% starch,
proplene glycol, or olive oil | rapid onset of ataxia, deep depression
resembling anesthesia; deaths usually
occurred within 1 hour; recovery from
nonfatal doses seldom lasted > 30 minutes | fasted 12 hour prior to dosing | NA | Matthews C, Davidson J, Bauer E, Morrison JL, Richardson AP. 1956. p-
Hydroxybenzoic acide esters as preservatives II. Acute and chronic
toxicity in dogs, rats, and mice. J Am Pharmaceut Assoc 45:260-267. | | Sodium arsenite | 41 | 36 | 27 - 52
(95% CL; slope =
7.6 [S.E. 2.7]) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | male | oral gavage | single dose | 14 day observation; toxicity symptoms:
diarrhea, diuresis, posture, respiratory
effects, lethargy, abnormal gait; time to onset
of signs < 1day; duration of signs 3 days; 9
rats dead (average per test) | 3 dose levels (5 male each); 15 rats
used; OECD TG401 (1981) followed for
experimental procedures | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA, Pelling D, Tomlinson NJ, Walker AP. 1990. Jul. The International Validation Of A Fixed-Dose Procedure As An Alternative To The Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | Sodium arsenite | 41 | 41 | 31 - 53 (these
limits are +/- 1.96
S.D.) | Thompson method;
Weil tables | Carworth-Wistar
rats; 90-120 g; 4-5
weeks | male | oral gastric
intubation | in aqueous solution;
concentration intubated = 10
mg/mL; dosages arranged in
a logarithmic series differing
by a factor of 2 | LD50 based on mortalities during a 14 day period | non-fasted; groups of 5 rats; single oral dose toxicity | reagent grade | RTECS REFERENCE Smyth HF h. Carpenter CP. Well CS, Pozzani UC, Striegel JA, Nycum, JS. 1969. Range-finding toxicity data: List VII. Am Ind Hyg Assoc J 30: 470-476. Carnegie-Mellon University, Pittsburgh, Pl (LD50 value) Smyth HF h. Carpenter CP, Well CS, Pozzani UC, Striegel JA. 1962. Range-finding toxicity data: List VI. Am Ind Hyg Assoc J 23:95-107. Mellon Institute of Industrial Research, Pittsburg, PA (experimental nazamaters) | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |--|--|--|--|--|--|--|--|---
---|---|--|---| | Sodium arsenite | 41 | 42 | 35 - 50 (95%
CL) | Litchfield and
Wilcoxon method | Holtsman rats; 300-
500 g; 100-300 days
(13 - 41 weeks) | male and
female | oral, gelatin
capsules | 20, 50, 100, 200 (all in mg/kg) | death occurred within 4 days | approximately 40 rats used; 24 hour
fasting before dosing; rats dosed under
light anesthesia | Baker
Analyzed
Reagent with
0.02% | Done AK, Peart AJ. 1971. Acute Toxicities of Arsenical Herbicides. Cinical Toxicology, 4(3):343-355. University of Utah, Salt Lake City, UT | | Sodium arsenite | 41 | 42 | 35 - 58
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | male and
female | oral gavage | single dose | 14 day observation; toxicity symptoms:
diarrhea, diuresis, posture, respiratory
effects, lethargy, abnormal gait; time to onset
of signs < 1 day; duration of signs 3 days; 9
rats dead (average per test) | 3 dose levels (5 male each and 5 female); 30 rats used; OECD TG401 (1981) followed for experimental procedures | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA, Pelling D, Tomlinson NJ, Walker AP. 1990. Jul. The International Validation Of A Fixed-Dose Procedure As An Alternative To The Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | Sodium arsenite | 41 | 48 | 37 - 76
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley rats | female | oral gavage | single dose | 14 day observation; toxicity symptoms:
diarrhea, diuresis, posture, respiratory
effects, lethargy, abnormal gait; time to onset
of signs < 1 day; duration of signs 3 days; 9
rats dead (average per test) | 3 dose levels (5 female each); 15 rats
used; OECD TG401 (1981) followed for
experimental procedures | NA | Vandenheuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJA, Pelling D, Tomlinson NJ, Walker AP. 1990. Jul. The International Validation Of A Fixed-Dose Procedure As An Alternative To The Classical LD50 Test Food And Chemical Toxicology 28(7):469-482. | | Sodium arsenite | 41 | 53 | 39 - 74
(95% CL) | acceptable methods
(e.g., Bliss, Litchfield
and Wilcoxon, Weil,
Thompson, etc.) | Sprague-Dawley
rats; 190-300 g | female | oral gavage | single dose | 14 day observation; toxicity symptoms:
motor activity decrease, respiratory effects,
blanching, piloerection, salivation, diarrhea;
time to onset of signs < 1 day; duration of
signs 3 days; animals fasted 16-20 hours
before administration | UDP Test | NA | Yam J, Reer PJ, Bruce RD. 1991. Comparison of the up-and-down method and the fixed-dose procedure for acute oral toxicity testing. Food Chem Toxicol 29(4):259-264. The Procter and Gamble Co., Cincinnati, OH | | Sodium chloride | 3000 | 3000 | NA | NA | rats | NA | oral | NA | NA NA | No information/reference provided. | NA | RTECS REFERENCE CODEN: TXAP49 Bibliographic Data:
Taxicology and Applied Pharmacology. (Academic Press, Inc., I. E. First
St., Duluth, Mr. 9580) V.I. 1-995 - CODEN Reference: 20.57 1971. ——
Tucker RK, Haegel MA. 1971. Compararive acute oral toxicity of
pesticides to six species of birds. Toxicology and Applied Pharmacology
20.57-65. | | Sodium chloride | 3000 | 3620 | +/-300
(S.E.) | Croxton (1953) and
Waugh (1952) | Wistar albino rats;
female: 167+/-27 g;
young adult | female | oral;
intragastric
tube | doses = 0, 0.8, 3, 3.2, 3.5,
3.8, 4, 5, 10, 16 g/kg in
water; 20 mL/kg dose; 2
largest doses in larger
volumes | convulsive movements, diarrhea, muscular
rigidity, prostration, respiratory failure; death
within 14 hours | fasted for 16 hours; 84 rats used; 12 - 44 rats per dose | NA | Boyd EM, Shanas MN. 1963. The acute oral toxicity of sodium chloride.
Arch Internat Pharmacodyn 144:86-96.
Quebecs' University, Kingston, Ontario. Canada | | Sodium chloride | 3000 | 3750 | +/-430
(S.E.) | Croxton (1953) and
Waugh (1952) | Wistar albino rats;
male: 202+/-42 g;
female: 167+/-27 g;
young adult | male and
female
(equal
numbers) | oral;
intragastric
tube | doses = 0, 0.8, 3, 3.2, 3.5,
3.8, 4, 5, 10, 16 g/kg in
water; 20 mL/kg dose; 2
largest doses in larger
volumes | convulsive movements, diarrhea, muscular
rigidity, prostration, respiratory failure; death
within 14 hours | fasted for 16 hours; 168 rats used; equal numbers of male and female; 12-44 rats per dose; this LD50 is determined from the data used to determine LD50 of 3620 mg/kg (female) and 3890 mg/kg (male) also reported in this reference [Boyd and Shanas 1963] | | Boyd EM, Shanas MN. 1963. The acute oral toxicity of sodium chloride.
Arch Internat Pharmacodyn 144:86-96.
Quebecs' University: Kingston, Ontario, Canada | | Sodium chloride | 3000 | 3890 | +/-300
(S.E.) | Croxton (1953) and
Waugh (1952) | Wistar albino rats;
male: 202+/-42 g;
young adult | male | oral;
intragastric
tube | doses = 0, 0.8, 3, 3.2, 3.5,
3.8, 4, 5, 10, 16 g/kg in
water; 20 mL/kg dose; 2
largest doses in larger | convulsive movements, diarrhea, muscular
rigidity, prostration, respiratory failure; death
within 14 hours | fasted for 16 hours; 84 rats used; 12 - 44 rats per dose | NA | Boyd EM, Shanas MN. 1963. The acute oral toxicity of sodium chloride.
Arch Internat Pharmacodyn 144:86-96.
Quebecs' University, Kingston, Ontario, Canada | | Sodium chloride | 3000 | 4200 | 3980 - 4430
(95% CL) | Litchfield and
Wilcoxon method
(1949) | rats | NA | oral | NA | NA | reference in Italian | NA | Scognamiglio WP, Amorico L, Gatti GL. 1972. Esperienze di tossicita e di tolleranza al monosioglutammato con un saggio di condizionamento di salvaguardia. Il Farmaco Edizone Pratica 27:19-27. | | Sodium chloride | 3000 | 6140 | +/-310
(S.E.) | NA | CBL Wistar albino
rats; 150-200 g | male | oral;
intragastric
tube | single dose; 5000 - 7500
mg/kg dose range; cmpd
dissolved in distilled water;
20 mL/kg dosage | observed for 5 days; premortal diarrhea; convulsive movements | 5 rats per dose; 30 rats used; rats not fasted | Merck
Reagent | Boyd EM, Abel MM, Knight LM. 1966. The chronic oral toxicity of sodium chloride at the range of the LD50 (0.1L). Canad J Physiol Pharmacol 44:157-172. Queen's University, Ontario, Canada | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 34.17 | +/- 20.95
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | female | oral gavage | single dose: 40,60,80 mg/kg,
dosing solution: 10,5,1,0.5%
(w/v); dosing vol: 0.4-8.0
mL/kg (40 mg/kg); 0.6-12
mL/kg (60 mg/kl); 0.8-16
mL/kg (80 mg/kg); doses in
distilled water; 10% dose | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight; 5
animals used | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 38.55 | +/- 7.79
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | female | oral gavage | single dose: 40,60,80 mg/kg;
dosing solution: 10,5,1,0.5%
(w/v); dosing vol: 0.4-8.0
mL/kg (40 mg/kg); 0.6-12
mL/kg (60 mg/kg); 0.8-16
mL/kg (80 mg/kg); doses in
distilled water; 5% dose | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight; 5
animals/dose | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokte, IL | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |--|--|--|--|--|--
--------------------|--|--|--|--|--|---| | Sodium dichromate
(Sodium bichromate
VI) | 50 | 39.02 | +/- 13.54
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | female | oral gavage | single dose: 40, 50, 60, 80,
100 mg/kg; dosing solution
50% (w/v); 0.8-2.0 mL/kg
dosing volume; doses in
distilled water | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight; 5 male
and 5 female rats per dose; 10 rats/dose;
5 female rats/dose for this value | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 48.98 | +/- 10.50
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | male | oral gavage | single dose: 40,60,80 mg/kg,
dosing solution: 10,5,1,0.5%
(w/v); dosing vol: 0.4-8.0
mL/kg (40 mg/kg); 0.6-12
mL/kg (60 mg/kl); 0.8-16
mL/kg (80 mg/kg); doses in
distilled water; 10% dose | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight; 5
animals/dose | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 50 | NA | NA | rats | NA | NA | NA | NA | reference in Russian | NA | RTECS REFERENCE Gigiena Truda i Professional'nye Zabolevaniya.
Labor Hygiene and Occupational Diseases. (VO Mechdunarodnaya
Kniga, 113095 Moscow, USSR) V.1-36, 1957-1992. For publisher
information, see MTPEBL CODEN Reference: Vol 22 (8) 38, 1978. | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 51.1 | +/- 5.93
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | male and
female | oral gavage | single dose: 40, 50, 60, 80, 100 mg/kg; dosing solution 50% (w/v); 0.8-20 mL/kg dosing volume; doses in distilled water | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before dosing; animals fasted overnight; 5 male and 5 female rats per dose; 10 rats/dose; this LD50 is determined from the data used to determine LD50 of 302 mg/kg (female) and 58.84 mg/kg (male) also reported in this reference [Gad et al. 1986] | member | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 55.75 | +/- 15.98
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | male | oral gavage | single dose: 40,60,80 mg/kg,
dosing solution: 10,5,1,0.5%
(w/v); dosing vol: 0.4-8.0
mL/kg (40 mg/kg); 0.6-12
mL/kg (60 mg/kl); 0.8-16
mL/kg (80 mg/kg); doses in
distilled water; 5% dose | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight; 5
animals/dose | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 57.13 | +/- 8.81
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | female | oral gavage | single dose: 40,60,80 mg/kg;
dosing solution: 10,5,1,0.5%
(w/v); dosing vol: 0.4-8.0
mL/kg (40 mg/kg); 0.6-12
mL/kg (60 mg/kl); 0.8-16
mL/kg (80 mg/kg); doses in
distilled water; 0.5% dose | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight, 5
animals/dose | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 58.84 | +/- 5.78
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | male | oral gavage | single dose: 40, 50, 60, 80,
100 mg/kg; dosing solution
50% (w/v); 0.8-20 mL/kg
dosing volume; doses in
distilled water | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight; 5 male
and 5 female rats per dose; 10 rats/dose;
5 male rats/dose for this value | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 59.84 | +/- 7.74
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | male | oral gavage | single dose: 40,60,80 mg/kg;
dosing solution: 10,5,1,0.5%
(w/v); dosing vol: 0.4-8.0
mL/kg (40 mg/kg); 0.6-12
mL/kg (60 mg/kl); 0.8-16
mL/kg (80 mg/kg); doses in
distilled water; 0.5% dose | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight; 5
animals/dose | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | Sodium dichromate
(Sodium bichromate
VI) | 50 | 59.84 | +/- 7.74
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | male | oral gavage | single dose: 40,60,80 mg/kg;
dosing solution: 10,5,1,0.5%
(w/v); dosing vol: 0.4-8.0
mL/kg (40 mg/kg); 0.6-12
mL/kg (60 mg/kl); 0.8-16
mL/kg (80 mg/kg); doses in
distilled water; 1% dose | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight; 5
animals/dose | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |--|--|--|--|---|--|--------|--
--|---|--|--|--| | Sodium Dichromate
(Sodium Bichromate
VI) | 50 | 64.5 | +/- 10.18
(S.D.) | Gad and Weil (1982)
Probit analysis | Fischer 344 rats
(Harlen Sprague
Dawley) | female | oral gavage | single dose: 40,60,80 mg/kg;
dosing solution: 10,5,1,0.5%
(w/v); dosing vol: 0.4-8.0
mL/kg (40 mg/kg); 0.6-12
mL/kg (60 mg/kl); 0.8-16
mL/kg (80 mg/kg); doses in
distilled water; 1% dose | observed first 6 hours then day 1, 7 and 14;
hypoactivity, lacrimation, mydriasis,
diarrhea, change in body weight; LD50
increased as the concentration of the dosing
solution increased | animals acclimated for 2 weeks before
dosing; animals fasted overnight; 5
animals/dose | member
companies of
the Industrial
Health
Foundation | Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. Proceedings of the Chromium Symposium, pp. 43-58. G.D. Searle and Co., Skokie, IL | | Sodium hypochlorite | 8910
(from
HSDB);
no rat oral
data from
RTECS | 8200 | NA 12.5% hypochlorite solution | NA | Sodium Hypochlorite Toxicity Profile. 1990. British Industrial Biological Research Association (BIBRA). | | Sodium hypochlorite | 8910
(from
HSDB);
no rat oral
data from
RTECS | 9360 - 11700 | NA 12.5% hypochlorite solution | NA | Colgate-Palmolive. 1990. Internal Report: Investigation of the properties of the wash water in connection with washing using "Klorin" bleach. Unpublished. | | Sodium hypochlorite | 8910
(from
HSDB);
no rat oral
data from
RTECS | >11800 | NA 3.6% hypochlorite solution | | Colgate-Palmolive. 1990. Internal Report: Investigation of the properties of the wash water in connection with washing using "Klorin" bleach. Unpublished. | | Sodium hypochlorite | 8910
(from
HSDB);
no rat oral
data from
RTECS | 13000 | NA 5.25% hypochlorite solution | NA | MSDS Chlorine Institute 1982 | | Sodium I fluoride | 115 | 64
(29 mg F/kg;
converted to mg
NaF/kg) | 60 - 69
(95% CI) | Litchfield and
Wilcoxon method
(1949); Bliss (1938) | rats; mean bw = 169
g; 3 months | female | oral | 5 mL∕kg | 22 rats died within 3 hour, 15 rats died after 3 hour, observed for 7 days; signs of toxicity appeared from 5-15 minutes after administration of NaF: muscle weakness, salivation, diarrhea, Jacrimation, tremor, convulsion, hypopnea, cynosis, urinary incontinence; most animals died within 24 hour after dosine | reference paprer in Japanese; English
summary and table/graph headers; see
paper for information about regression
coefficient of log dose-NED mortality
curve | NA | Sakama H. 1980. Toxicological studies of fluorine compounds. I. Acute toxicity of sodium fluoride to rats and mice in relation to age, sex, animal genus, and administration route. Shika Gakuho. Journal of Dentistry. 80: 1519. Tokyo Dental College, Japan. | | Sodium I fluoride | 115 | 69
(31 mg F/kg;
converted to mg
NaF/kg) | 55 - 84
(CL) | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
rats; mean bw and
ranges 250 g (200-
359 g); 90 days | female | stomach tube | NaF in aqueous solution (0.2
- 1.6 mL/dose) | mortality confined to 24 hour; when doses equal to or greater than the LD50 were administered, half of the 250 g rats died within 3 hours for tast died within 3 hours, 35 rats died atter 3 | fasted 24 hour before dosing, at least
seven dose levels used for each
population; groups of 8 -15 rats | NA | DeLopez OH, Smith FA, Hodge HC. 1976. Plasma fluoride concentrations in rats acutely poisoned with sodium fluoride. Toxicol Appl Pharmacol 37:75-83. Univ. of Rochester School of Med. And Dent., Rochester, NY | | Sodium I fluoride | 115 | 73
(33 mg F/kg;
converted to mg
NaF/kg) | 66 - 80
(95% CI) | Litchfield and
Wilcoxon method
(1949); Bliss (1938) | rats; mean bw = 295
g; 3 months | male | oral | 3 mL/kg | 6 rats died within 3 hour; 35 rats died after 3 hour; observed for 7 days; signs of toxicity appeared from 5-15 minutes after administration of NaF: muscle weakness, salivation, diarrhea, lacrimation, tremor, convulsion, hypopnea, cynosis, urinary incontinence; most animals died within 24 hour after dosine | reference paprer in Japanese; English
summary and table/graph headers; see
paper for information about regression
coefficient of log dose-NED mortality
curve | NA | Sakama H. 1980. Toxicological studies of fluorine compounds. I. Acute toxicity of sodium fluoride to rats and mice in relation to age, sex, animal genus, and administration route. Shika Gakubo. Journal of Dentistry. 80: 1519. Tokyo Dental College, Japan. | | Sodium I fluoride | 115 | 80 | +/- 5
(S.E.) | Winthrop logarithmic
probit graph paper;
Miller and Tainter
(1944) | Albino rats; 200-
300 g | NA | oral; stomach
tube | single dose; 25% solution;
22 - 288 mg/kg doses; | percentage mortality observed in 24 hour
calculated, then LD50 determined | 98 rats used | NA | Shourie KL, Hein JW, Hodge HC. 1950. Preliminary studies of the caries inhibiting potential and acute toxicity of sodium monofluorophosphate. J Dent Res 29:529-533. University of Rochester, School of Medicine and Denistry. Rochester, NY. | | Sodium I fluoride | 115 | 84
(38 mg F/kg;
converted to mg
NaF/kg) | 77 - 93
(95% CI) | Litchfield and
Wilcoxon method
(1949); Bliss (1938) | rats; mean bw = 60
g; 3 weeks | female | oral | 5 mL/kg | 16 rats died within 3 hour, 32 rats died after 3 hour, observed for 7 days; signs of toxicity appeared from 5-15 minutes after administration of NaF: muscle weakness, salivation, diarrhea, lacrimation, tremor, convulsion, hypopnea, cynosis, urinary incontinence; most animals died within 24 hour after dossine | reference paprer in Japanese; English
summary and table/graph headers; see
paper for information about regression
coefficient of log dose-NED mortality
curve. | NA | Sakama H. 1980. Toxicological studies of fluorine compounds. I. Acute toxicity of sodium fluoride to rats and mice in relation to age, sex, animal genus, and administration route. Shika Gakubo. Journal of Dentistry. 80: 1519. Tokyo Dental College, Japan. | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|---|---|--------|--|---
---|--|----------------------------|--| | Sodium I fluoride | 115 | 107
(46 mg F/kg;
converted to mg
NaF/kg) | 95 - 110
(95% CI) | Litchfield and
Wilcoxon method
(1949); Bliss (1938) | rats; mean bw = 58
g; 3 weeks | male | oral | 5 mL/kg | 2 rats died within 3 hour; 32 rats died after 3 hour, observed for 7 days, signs of toxicity appeared from 5-15 minutes after administration of Naf: muscle weakness, salivation, diarrhea, lacrimation, tremor convulsion, hypopnea, cynosis, urinary incontinence; most animals died within 24 hour after dosine | reference paprer in Japanese; English
summary and table/graph headers; see
paper for information about regression
coefficient of log dose-NED mortality
curve. | NA | Sakama H. 1980. Toxicological studies of fluorine compounds. I. Acute toxicity of sodium fluoride to rats and mice in relation to age, sex, animal genus, and administration route. Shika Gakuho. Journal of Dentistry. 80: 1519. Tokyo Dental College, Japan. | | Sodium I fluoride | 115 | 115
(52 mg F/kg;
converted to mg
NaF/kg) | 106 - 126
(slope = 1.23 [1.06
1.43]; 95% CL) | | Sprague-Dawley
rats; mean bw and
ranges 150 g (112-
184 g); 30-45 days | female | stomach tube | NaF in aqueous solution (0.2
- 1.6 mL/dose); 30 - 100 mg
F/kg doses; | mortality confined to 24 hour, when doses ≥ the LD50 were administered, one-third of the 150 g rats died within 7 hours; dose in mg F/kg and 24 hour mortality; 75-2/2 dead; 70-9/10 dead; 65-7/9 dead; 62-6/8 dead; 58-4/10 dead; 55-9/15 dead; 50-8/12 dead; 42-2/10 dead; 42-2/10 dead; 42-2/10 dead; 42-2/10 dead; 43-0/2 43-0/ | | NA | DeLopez OH, Smith FA, Hodge HC. 1976. Plasma fluoride concentrations in rats acutely poisoned with sodium fluoride. Toxicol Appl Pharmacol 37:75-83. Univ. of Rochester School of Med. And Dent., Rochester, NY | | Sodium I fluoride | 115 | 115
(52 mg F/kg;
converted to mg
NaF/kg) | 108 - 119
(slope = 1.28 [1.0 -
1.6]; 95% CL) | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
rats; mean bw and
ranges 80 g (50-108
g); 30-45 days | female | stomach tube | NaF in aqueous solution (0.2
- 1.6 mL/dose); 30 - 100 mg
F/kg doses; | mortality confined to 24 hour; when doses equal to or greater than the LD50 were administered, half of the 80 g rats died within 6 hours; dose in mg F/kg and 24 hour mortality: 100-9/12 dead; 75-8/9 dead; 70-8/10 dead; 60-8/10 dead; 50-2/10 dead; 40-2/10 dead; 30-0/2 dead; salivation, diarrhea, thirst_letharey. | fasted 24 hour before dosing; at least
seven dose levels used for each
population; groups of 2 -12 rats; 63 rats
used; 36 dead; detailed information from
RTECS reference (master thesis for de
Lopez 1970) | NA | RTECS REFERENCE CODEN. NTIS** Bibliographic Data. National Technical Information Service. (Springfield, VA 22161) Formerly U.S. Clearinghouse for Scientific & Technical Information. CODEN Reference: UR-3490-95 DeLopez OH. 1970. Acted Buoride toxicity: plasma fluoride concentrations following acute oral doses of sodium fluoride in the rat. Master of Science thesis. Univ. of Rochester School of Med. And Dent., Rochester, NY. Soee de Lone: 1976. | | Sodium I fluoride | 115 | 119
(54 mg F/kg;
converted to mg
NaF/kg) | 108 - 119
(slope = 1.28 [1.0 -
1.6]; 95% CL) | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
rats; mean bw and
ranges 80 g (50-108
g); 30-45 days | female | stomach tube | NaF in aqueous solution (0.2
- 1.6 mL/dose); 30 - 100 mg
F/kg doses | mortality contined to 24 hour, when doses equal to or greater than the LD50 were administered, half of the 80 g rats died within 6 hours; dose in mg F/kg and 24 hour mortality: 100-9/12 dead; 75-8/9 dead; 70-8/10 dead; 60-8/10 dead; 50-2/10 dead; 40-2/10 dead; 30-0/2 dead; salivation, diarrhea, thirst. Jethares. | fasted 24 hour before dosing, at least
seven dose levels used for each
population; groups of 2 -12 rats; 63 rats
used; 36 dead, detailed information from
RTECS reference (master thesis for de
Lopez 1970) | NA | DeLopez OH, Smith FA, Hodge HC. 1976. Plasma fluoride concentrations in rats acutely poisoned with sodium fluoride. Toxicol Appl Pharmacol 37:75-83.
Univ. of Rochester School of Med. And Dent., Rochester, NY | | Sodium I fluoride | 115 | 180 | 120 - 260 (these
limits are +/- 1.96
S.D.) | Thompson method;
Weil tables | Carworth-Wistar
rats; 90-120 g; 4-5
weeks | male | oral gastric
intubation | in aqueous solution;
concentration intubated = 5
mg/mL; dosages arranged in
a logarithmic series differing
by a factor of 2 | LD50 based on mortalities during a 14 day period | non-fasted; groups of 5 rats; single oral dose toxicity | reagent grade | Smyth HF Jr, Carpenter CP, Weil CS, Pozzani UC, Striegel JA, Nycum, JS. 1969. Range-finding toxicity data: List VII. Am Ind Hyg Assoc J 30: 470-476. Carnegie-Mellon University, Pittsburgh, Pt (LD50 value) ——————————————————————————————————— | | Sodium I fluoride | 115 | 189
(85.5 mg F/kg;
converted to mg
NaF/kg) | #2: 170 -209
(95%CI) | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
rats; 152-202 g | male | oral;
intragastric | 50 to 220 mg F/kg (111 - 486
mg NaF/kg) in water | number of deaths determined at 1, 2, 4, 8, 24 hour and daily thereafter; 20 rats dead at 24 hour; 26 rats dead at 14 days; monitored for 2 weeks but no deaths after 4 days; deaths/dose (mg/kg): 111-0/10, 122-0/10, 134-1/10, 147-0/10, 162-0/10, 166-4/10, 183 d-10, 201-3/10, 221-6/10, 243-8/10 | fasted 18 hour before dosing; 10 day
acclimatization before dosing; 8 rats in
each dosage group; 80 rats used | >99.5% purity | Whitford GM, Birdsong-Whitford NL, et al. 1990. Acute oral toxicity of sodium fluoride and monofluorophosphate separately or in combination in rats. Caries Res 24(2):121-126. Medical College of Georgia, Augusta. GA: Dept. of Odonto-Stomatologie, Laboratoires Goupil SA, Cachan, France. | | Sodium I fluoride | 115 | 200 | NA | NA | rats | NA | oral; stomach
tube | NA | abdominal distress, diarrhea, cyanosis,
dyspnea, fibrillation of skeletal muscles;
onset within 6 hours | information from the laboratories of
Division of Pharmacology, U.S. FDA.;
fasted animals | NA | Lehman AJ. 1951. Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides. Quarterly Bulletine (Association of Food and Drug Officials of the United States). Vol. 15:122-133. U.S. FDM | | Sodium I fluoride | 115 | 223 | NA | Probit analysis | Sprague-Dawley
rats; 190-315 g | male | oral gavage | 0.101 - 0.500 g NaF/kg bw | animals observed for mortality frequently
during first 4 hour after dosing; observed
daily thereafter for 14 days | fasted 18 - 20 hour before dosing; 8 rats
per group; 48 total rats used; mortality
confined to 24 hour after dosing except
3 animals died on day 2, 3, and 5 | J.T. Baker
Chemical Co. | Skare JA, Schrotei KR, Nixon GA. 1986. Lack of DNA-strand breaks in rat testicular cells after in vivo treatment with sodium fluoride. Mutat Res 170:85-92. The Proctor and Gamble Company. Cincinnati, OH | | Sodium I fluoride | 115 | 279
(126.3 mg
F/kg;
converted to mg
NaF/kg) | #1: 218 - 358
(95%CI) | Litchfield and
Wilcoxon method
(1949) | Sprague-Dawley
rats; 152-202 g | male | oral;
intragastric | 50 to 220 mg F/kg (111 - 486
mg NaF/kg) in water | number of deaths determined at 1, 2, 4, 8, 24 hour after dose and each day thereafter; 32% rats dead during 1st day; 23 rats dead at 14 days; monitored for 2 weeks but no deaths after 4 days; deaths/dose (mg/kg): 160-1/10, 207-4/10, 254-5/10, 330-6/10, 428-7/10 | fasted 18 hour before dosing; 10 day
acclimatization before dosing; 10 rats in
each dosage group; 50 rats used | >99.5% purity | College of Georgia, Augusta, GA; Dept. of Odonto-Stomatologie,
Laboratoires Goupil SA, Cachan, France. | | Sodium oxalate | 11160 | 11160 | NA | NA | rat | NA | oral | NA | NA | Value derived from 7500 mg/kg from
RTECS for oxalic acid, which is a typo.
Original reference (Vernot et al 1977)
has 7.5 ml/kg) | NA | RTECS REFERENCE CODEN: EVHPAZ Bibliographic Data: EHP,
Environmental Health Perspectives. (U.S. Government Printing Office,
Supt of Documents, Washington, DC 20402) No.1-1972- CODEN
Reference: 106(Suppl). | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |-----------------------|--|--|--|--|---|--------------------|--|--|---|---|------------------------------------|---| | Sodium oxalate | 11160 | 558.13
(converted from 7.5
mL/kg 5% oxalic
acid) | 372 - 819 | moving average
(Thompson & Weil) | Sprague-Dawley;
200-300 g | female | oral gastric intubation | 5% aqueous solution; doses
arranged in a logarithmic
series differing by a factor of
2 (assumed from Smyth et al.
1962) | LD50 based on mortalities during a 14 day
period (assumed from Smyth et al. 1962) | non-fasted; groups of 5 rats; single oral
dose toxicity (assumed from Smyth et al
1962); reported as 7.5 ml/kg of 5%
oxalic acid | NA | Vernot EH, MacEwen JD, Haun CC, Kinkead ER. 1977. Acute toxicity and skin corrosion data for some organic and inorganic compounds and aqueous solutions. Toxicology and Applied Pharmacology 42:417-423. (Indicates methods of Smyth et al. 1962 were used.) | | Sodium oxalate | 11160 | 706.96
(converted from 9.5
mL/kg 5% oxalic
acid) | 402 - 915 | moving average
(Thompson & Weil) | Sprague-Dawley;
200-300 g | male | oral gastric
intubation | 5% aqueous solution; doses
arranged in a logarithmic
series differing by a factor of
2 (assumed from Smyth et al.
1962) | LD50 based on mortalities during a 14 day
period (assumed from Smyth et al. 1962) | non-fasted; groups of 5 rats; single oral
dose toxicity (assumed from Smyth et al
1962); reported as 9.5 ml/kg of 5%
oxalic acid | NA | Vernot EH, MacEwen JD, Haun CC, Kinkead ER. 1977. Acute toxicity and skin corrosion data for some organic and inorganic compounds and aqueous solutions. Toxicology and Applied Pharmacology 42:417-423. (Indicates methods of Smyth et al. 1962 were used.) | | Sodium selenate | 1.6 | 1.6 | NA | NA | rats | NA | oral | NA | NA | reference in Russian | NA | RTECS REFERENCE CODEN: GISAAA Bibliographic Data: Gigiena i Sanitariya. For English translation, see HYSAAV. (V/O Menhalmarodnaya Kniga, 113095Moscow, USSR) V.1-1936-CODEN Reference: 49(9),66,1984 | | Sodium selenate | 1.6 | 5.98 | NA | NA | rats | NA | oral; stomach
tube | NA | violent gastroenteritis, diarrhea, rice water
stools,garlic breath, nervousness, CNS
depression; onset within 15 minutes | information from the laboratories of
Division of Pharmacology, U.S. FDA.;
fasted animals | NA | Lehman AJ. 1951. Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides. Quarterly Bulletine (Association of Food and Drug Officials of the United States). Vol. 15:122-133. U.S. FDA | | Strychnine | 2.35 | 2.35 | NA | mortality curves | adult white rats | female | oral, stomach
tube; single
dose | 2.25 - 15 mg/kg dose; single
dose; cmpd mixed in gum
acacia and water; 1 mg/mL
dose solution | 15, 10, 7.5, 6, Smg/kg dose killed 90 rats (100% mortality); 4 mg/kg, 17/18 rats dead (95%); 3 mg/kg, 20/27 rats dead (74%); 2.5 mg/kg 19/27 rats dead (70%); 2.5 mg/kg, 20/27 rats dead (70%); 2.5 mg/kg, 7/18 rats dead (39%); 7.3 - 14.1 minutes average time to death | | U.S.P IX
Strychnine
alkaloid | RIECS REFERENCE CODEN. JAPMAS Bibliographic Data: Journal of the American Pharmaceutical Association, Scientific Edition, (Washington, DC) V.29-49, 1940-60. For publisher information, see JPMSAE CODEN Reference: 31,113,1942. —— Ward JC, Crabtree BG. 1942. Strychnine X. Comparative accuracies of stomach tube and intraperitoneal injection methods of bioassay. Journal of the American Pharmaceutical Association, Scientific Edition 31:113-115. U.S. Fish and Wildlife Service. Demyer. CO | | Strychnine | 2.35 | 6.5 | NA | mortality curves | adult white rats | male | oral, stomach
tube; single
dose | 5 - 15 mg/kg dose; single
dose; cmpd mixed in gum
acacia and water; 1 mg/mL
dose solution | 15 mg/kg, 16/18 rats dead (89% mortality);
10 mg/kg, 15/18 rats dead (83%); 7.5 mg/kg,
16/18 rats dead (89%); 6 mg/kg 6/18 rats
dead (33%); 5 mg/kg, 4/18 rats dead (39%);
10.8 - 19.5 minutes average time to death | | U.S.P IX
Strychnine
alkaloid | Ward JC, CrabtreeDG. 1942. Strychnine X. Comparative accuracies of
stomach tube and intraperitoneal injection methods of bioassay. Journal
of the American Pharmaceutical Association, Scientific Edition 31:113-
115. U.S. Fish and Wildlife Service, Denver, CO | | Strychnine | 2.35 | 16.2 | NA | NA | rats | NA | oral, stomach
tube; single
dose | NA | tonic convulsions; deaths from medullary
paralysis and exhaustion and usually occur
within a 12 hour period | NA | NA | Lehman AJ. 1951. Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides. Quarterly Bulletine (Association of Food and Drug Officials of the United States). Vol.15:122-133. U.S. FDM | | Strychnine | 2.35 | 25 | NA | statistical formula
based on mortality
rates | wild Norway rats | NA | oral, stomach
tube; single
dose | a number of individual doses
of a cmpd, each dose at a
different concentration level,
are given to an equal number
of test animals | convulsions | NA | NA | Peardon DL, Kilbourn E, et al. 1972. New selective rodenticides. Soap
Cosmet Chem Spec 48(12):6. Rohm
and Haas Company, Philadelphia, PA | | Thallium I sulfate | 16 | 15.8 | +/- 0.9
(S.E.) | Litchfield and Fetig
(1941) | wild Norway rats
(trapped in
Baltimore, MD);
134-579 g (ave =
298 g), adult | male and
female | oral gavage | chemical suspended in 10%
acacia solution; received
appropriate doses in 1 mL
per 100 g bw | rats survived from 6 - 72 hours | 37 rats used (approx. equal number of
male/female); overnight fasting before
dosing; assays performed in winter,
repeated in summer; LD50 values from
combined information; final LD50 was
higher than winter LD50; attributed to
not having enough rats in winter. | GIBCO
brand; 99.0%
pure | Dieke SH, Richter CP. 1946. Comparative assays of rodenticides on wild
Norway rats. I. Toxicity. Publ Health Rep 61:672-679.
Johns Hopkins Hospital, Baltimore, MD | | Thallium I sulfate | 16 | 16 | NA | NA | rats | NA | oral | NA | NA | reference is a review article in Japanese;
this LD50 value assumed to be from
Peardon et al. 1972. | NA | RTECS REFERENCE CODEN: YAKUD5 Bibliographic Data: Gekkan Yakuji. Pharmaceuticals Monthly. (Yakugyo Jihosha, Inaoka Bidg., 2-36 Jinbo-cho, Kanda, Chiyoda-ku, Tokyo 101, Japan) V.1- 1959- CODEN Reference: 22.291,1980. | | Thallium I sulfate | 16 | 16 | NA | statistical formula
based on mortality
rates | wild Norway rats | NA | oral, stomach
tube; single
dose | a number of individual doses
of a cmpd; each dose at a
different conc level given to
equal number of test animals | respiratory failure | NA | NA | Peardon DL, Kilbourn E, et al. 1972. New selective
rodenticides. Soap
Cosmet Chem Spec 48(12).6. Rohm
and Haas Company, Philadelphia, PA | | Thallium I sulfate | 16 | 25 | NA | NA | rats | NA | oral, stomach
tube; single
dose | NA | 72 hour observation; most rats dead within this period | fasted animals | NA | Lehman AJ. 1951. Chemicals in Foods: a report to the association of food and drug officials on current developments. Part II. Pesticides. Quarterly Bulletine (Association of Food and Drug Officials of the United States). Vol.15:122-133. U.S. FDA | | Trichloroacetic acid | no rat oral
data from
RTECS | 400 | NA | NA | rats | NA | oral | NA | NA | (source of information not provided) | NA | Worthing CR, Walker SB, eds. 1987. Pesticide Manual. 8th edition. 765-766. | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³ mg/kg oral rat Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |------------------------|--|--|--|--|--|--|--|--|--|---|--|--| | Trichloroacetic acid | no rat oral
data from
RTECS | 3320 | 3160 - 3480
(95% certainty;
slope = 20.97) | Bliss | rats (raised in the
laboratory); 150-
250 g; 70-100 days | male and
female
(mostly
male) | oral intubation | single dose; acid adjusted
with sodium hydroxide to pH
range of 6 -7; 10 mL/kg dose
volume | observed for 6 days; passed into narcosis to seminarcosis and died or recovered within 36 hours; dose in g/kg versus mortality: 2.594 0/5; 3.000 - 3/10; 3.153 - 1/5; 3.400 - 5/10; 3.800 - 5/10; 3.901 - 5/5; 4.200 - 10/10; 4.600 10/10 | fasted 18 hours before dosing; 65 rats
used; 43 of 65 dead | NA | Woodard G, Lange SW, Nelson KW, Calvery HO. 1941. The acute oral toxicity of acetic, chloroacetic, dichloroacetic, and trichloroacetic acids. J Ind Hyg Toxicol 23(2):78-82. | | Trichloroacetic acid | no rat oral
data from
RTECS | 5000 | | | rats | male | oral | NA | NA | NA | NA | Farm Chemicals Handbook. 1992. Meister Pub., 37841 Euclid Ave.,
Willoughy, OH. p. C326. | | Trichloroacetic acid | no rat oral
data from
RTECS | 5060 | | | rats | female | oral | NA | NA | NA | NA | Farm Chemicals Handbook. 1992. Meister Pub., 37841 Euclid Ave.,
Willoughy, OH. p. C326. | | Trichloroacetic acid | no rat oral
data from
RTECS | 8900 | 7000 - 9900 | NA | rats; 220 +/- 40 g | NA | oral;
intragastric | NA | NA | (source of information not provided) | NA | Izmerov NF, Sanotsky IV, Sidorov KK. 1982. Toxicometric Parameters of
Industrial Toxic Chemicals under Single Exposure. International Register
of Potentially Toxic Chemicals (IRPTC). United Nations Environment
Programme (UNEP). Centre of International Projects, GKNT. Moscow,
Russia. | | Triethylenemelamine | 13 | 1 | NA | NA | rats | NA | oral | NA | NA | Reference offers neither experimental
details nor the primary reference for
LD50. Value reported as "ca. 1" | NA | Hayes WJ Jr. 1964. The toxicology of chemosterilants. Bulletin of the World Health Organization. 31:721-736. (RC's reference from 1983/84 RTECS.) | | Triethylenemelamine | 13 | 4 | NA | Probit method | Sprague-Dawley
rats; 190-200 g | female | oral | geometric progression of 14
for dosing; in water or neat | 20 rats used; 11 dead; observed for 14 days | non-fasted; 4 groups of 5 female; 20 rats used | Warrington,
PA | Thompson ED, Gibson DP. 1984. A method for determining the maximum tolerated dose for acute in vivo cytogenetic studies. Food Chem Toxicol 22(8):665-76. The Procter and Gamble Co., Cincinnati, OH | | Triethylenemelamine | 13 | 6.9 | NA | Probit method | Sprague-Dawley
rats; 190-200 g | male | oral | geometric progression of 14
for dosing; in water or neat | 20 rats used; 9 dead; observed for 14 days | non-fasted; 4 groups of 5 male; 20 rats used | Polysciences,
Inc.
Warrington,
PA | Thompson ED, Gibson DP. 1984. A method for determining the maximum tolerated dose for acute in vivo cytogenetic studies. Food Chem Toxicol 22(8):665-76. The Procter and Gamble Co., Cincinnati, OH | | Triethylenemelamine | 13 | 13 | 8 - 20
(95% CL; slope =
2.1) | Litchfield and
Wilcoxin (1949) | Wistar rats; 150-
350 g | male and
female | oral; stomach
tube | dissolved in isotonic saline
within 30 minutes of dosing;
less than 5% weight of
insoluble matter filtered out;
highest dose 500 mg/kg | 14 observation period; absence of acute toxicity signs | information not grouped according to
sex since differences not evident; 6 rats
per dose; animals fasted overnight | NA | RTECS REFERENCE CODEN: JPETAB Bibliographic Data: Journal of Pharmacology and Experimental Therapeutics. (Williams & Wilkins Co., 428 E. Preston St., Baltimore, MD 21202) V.1- 1909/10- CODEN Reference: 100,398,1950 Philips FS, Thiersch JB. 1950. The nitrogen mustard-like actions of 2,46-tris(ethylenimino)-s-triazine and other bis(ethylenimines). Journal of Pharmacology and Experimental Therapeutics 100:398-407. Sloan Ketnerine Institute for Cancer Research New York: NY | | Triphenyltin hydroxide | 46 | 46.4 | NA | NA | Fischer rats; 6
weeks | male and
female | oral intubation | single dose followed by daily
doses up to 14 days | observed up to 14 days | NA | NA | RTECS REFERENCE CODEN: NCILB* Bibliographic Data: Progress Report for Contract No. NIH-NCI-E-C-72-3252, Submitted to the National Cancer Institute by Litton Bionetics, Inc. (Bethesda, MD) CODEN Reference: NCI-E-C-72-3252, 1973 Carcinogenesis bioassay of environmental chemicals annual progress report NIH-NCI-E- C-72-3252, 5/13/71 8/6/73 and Final report NIH-NCI-E-71-2146. Submitted to The National Cancer Institute, National Institutes of Health, Bethesda, MD. 8/15/73 (revised 8/10/73). FM Garner (princ. investigat.), Litton Bionetics. Inc. Bethesda MD. | | Triphenyltin hydroxide | 46 | 156 | 115 - 208
(CL) | NA | rats | female | oral | | observed for 19 days; toxicity develops slowly; toxic signs 2 days after dose; deaths 5 - 9 days after initial dose; dose (mg/kg), number dead: 80 - 1/10; 160 - 4/10; 315 - 10/10; 630 - 10/10; toxic signs included squatting, ataxy, bristled hair, blood-crusted adherent margins of the eyelid, decreased respiratory rate and poor general condition | fasted animals; 4 groups of 10 female
rats each; each received one dose; 35 of
40 died | triphenyltin
hydroxide
96% | Pharma Forschung Toxikologie; Report 183/81; A 21593; Apr. 22, 1981; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00124210 and 00139030; Hoechst Aktiengesellschaft; EPA Acc. No. 071364; EPA Chem. Code: 083601; Core Grade/Tox Record No. minimum 005275 | | Triphenyltin hydroxide | 46 | 160 | NA | NA | rats | NA | oral | NA | NA | NA | triphenyltin
hydroxide
80.0% | Products Safety Labs; T-1399; May 8, 1992; U.S. EPA, Office of
Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No.
42265507; EPA Chem. Code: 083601; Core Grade/Tox Record No.
Guideline 009941, Jan. 5, 1993; | | Triphenyltin hydroxide | 46 | 165 | 113 - 230
(CL) | NA | rats | male | oral | single dose; 80, 160, 315, or
630 mg/kg doses | observed for 19 days; toxic signs 2 days after
dose; toxicity develops slowly; deaths 5 - 13
days after initial dose; dose (mg/kg), number
dead: 160 - 6/10; 315 - 10/10; 630 - 9/10;
toxic signs included squatting, ataxy, bristled
hair, blood-crusted adherent margins of the
eyelid, decreased respiratory rate,
dischourage of mucous feces, and poor
annural condition. | | triphenyltin
hydroxide
96% | Pharma Forschung Toxikologie; Report 182/81; A 21353; Apr. 22, 1981; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00124209; Hoechst Aktiengesellschaft; EPA Acc. No. 071364; EPA Chem. Code: 083601; Core Grade/Tox Record No. minimum 005275, minimum 003116 | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50 CALCULATION METHOD ⁵ Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE |
OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |------------------------|--|--|--|--|---|--------------------|--|-------------|---|--|--|--| | Triphenyltin hydroxide | 46 | 240 | NA | NA | rats | male | oral | NA | NA | NA | triphenyltin
hydroxide
tech | U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox
Oneliners; EPA Chem. Code: 083601; Core Grade/Tox Record No.
001493 | | Triphenyltin hydroxide | 46 | 313 | 232 - 422 | NA | rats | male | oral | NA | NA | NA | triphenyltin
hydroxide
tech | Cannon Laboratories, Inc.; Jan. 31, 1978; U.S. EPA, Office of Pesticide
Programs; Health Effects Division; Tox Oneliners; MRID No. 099049;
EPA Chem. Code: 083601; Core Grade/Tox Record No. minimum 001492 | | Triphenyltin hydroxide | 46 | 345 | 138 - 862 | NA | rats | female | oral | NA | NA | NA | triphenyltin
hydroxide
tech | Cannon Laboratories, Inc.; Jan. 31, 1978; U.S. EPA, Office of Pesticide
Programs; Health Effects Division; Tox Oneliners; MRID No. 099049;
EPA Chem. Code: 083601; Core Grade/Tox Record No. minimum 001492 | | Triphenyltin hydroxide | 46 | 360 | NA | NA | rats | female | oral | NA | NA | NA | triphenyltin
hydroxide
tech | U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox
Oneliners; EPA Chem. Code: 083601; Core Grade/Tox Record No.
001493 | | Triphenyltin hydroxide | 46 | 375 | 280 - 502 | NA | rats | male | oral | NA | NA | NA | Duter WP
(TPTH 47%) | Cannon Laboratories, Inc.; Feb. 23, 1978; U.S. EPA, Office of Pesticide
Programs; Health Effects Division; Tox Oneliners; MRID No. 099049;
EPA Chem. Code: 083601; Core Grade/Tox Record No. minimum 001492 | | Triphenyltin hydroxide | 46 | 375 | | NA | rats | male and
female | oral | NA | NA | NA | 50% WP
(Reg. No. 148-
1195 | U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 099049; EPA Chem. Code: 083601; Core Grade/Tox Record No. minimum | | Triphenyltin hydroxide | 46 | 380 | 288 - 502 | NA | rats | female | oral | NA | NA | NA | Duter WP
(TPTH 47%) | Cannon Laboratories, Inc.; Feb. 23, 1978; U.S. EPA, Office of Pesticide
Programs; Health Effects Division; Tox Oneliners; MRID No. 099049;
EPA Chem. Code: 083601; Core Grade/Tox Record No. minimum 001492 | | Triphenyltin hydroxide | 46 | 720 | 520 - 920 | NA | rats | female | oral | NA | NA | NA | Kansai
Robamame
soin B A/F
1000B (Red
Point) | Bio'dynamics, Inc.; 6584-81; Sept. 30, 1981; U.S. EPA, Office of
Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No.
00086072; EPA Chem. Code: 083601; Core Grade/Tox Record No.
Guideline 001881 | | Triphenyltin hydroxide | 46 | 830 | 580 - 1080 | NA | rats | male and
female | oral | NA | NA | NA | Kansai
Robamame
soin B A/F
1000B (Red
Point) | Bio'dynamics, Inc.; 6584-81; Sept. 30, 1981; U.S. EPA, Office of
Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No.
00086072; EPA Chem. Code: 083601; Core Grade/Tox Record No.
Guideline 001881 | | Triphenyltin hydroxide | 46 | 840 | 512 - 1378 | NA | rats | unknown | oral | NA | NA | NA | Duter
Flowable 30
(TPTH
19.7%) | Cannon Laboratories, Inc.; 9E-6359; Nov. 13, 1979; U.S. EPA, Office of Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No. 00086591; EPA Chem. Code: 083601; Core Grade/Tox Record No. minimum 001496 | | Triphenyltin hydroxide | 46 | 1200 | 600 - 1800 | NA | rats | male | oral | NA | NA | NA | Kansai
Robamame
soln B A/F
1000B (Red
Point) | Bio'dynamics, Inc.; 6584-81; Sept. 30, 1981; U.S. EPA, Office of
Pesticide Programs; Health Effects Division; Tox Oneliners; MRID No.
00086072; EPA Chem. Code: 083601; Core Grade/Tox Record No.
Guideline 001881 | | Valproic acid | 670 | 670 | 598 - 750 (95%
CL; slope = 1.2
[1.0 - 1.4; 95%
CL]) | Litchfield and
Wilcoxon method
(1949) | Osborne-Mendel
rats; young adult | male and
female | oral intubation | 2% in water | usual observaton time of 2 weeks;
depression, scrawny appearance, diarrhea;
dead within 2 hour - 2 days | 18 hours fasting; groups of 10 rats;
evenly divided between male and female | commercially
available
material | RTECS REFERENCE CODEN: FCTXAIV Bibliographic Data: Food and Cosmetics Toxicology. (London, UK) VI-19, 1963-81. For publisher information, see FCTOD7. CODEN Reference: 2,327,1964. Food flavorings and compounds of related structure I. Acute Oral Toxicity. Fd Cosmet Toxicol 2:327-334. U.S. Food and Drue Administration. Washineton. D. C. | | Valproic acid | 670 | 1480 | NA | NA | rats | male and
female | oral | NA | NA | reference in French | NA | IT'S Food and Drue Administration. Washington, DTC Deboeck AM, Valproic acid salt, its preparation and utilization. European Patent Office, Publication No. EP 0078785A1. Application date 11/03/82. | | Verapamil HCl | 108 | 108 | NA | NA | rats | NA | oral | NA | NA | NA | NA | RTECS REFERENCE CODEN: NIIRDN Bibliographic Data: Drugs
in Japan (Ethical Drugs). (Yakugyo Jiho Co., Ltd., Tokyo, Japan) CODEN
Reference: 6,766,1982. | | Verapamil HCl | 108 | 114 | 97 - 135 | Litchfield and
Wilcoxin (1949) | rats | NA | oral | NA | NA | reference in German | NA | Haas VH, Hartfelder G. 1962. A-Isopropyl-a-[(N-methyl-N-homoveratryl g-amino-propyl]-3,4-dimethoxyphenylacetonitrile, eine Substanz mit coronargefaferweiternden Eigenschaften 12:549-558. | | CHEMICAL ¹ | LD50 ²
mg/kg
oral
rat
RTECS | LD50 ³
mg/kg
oral
rat
Primary Reference | LD50 ⁴
mg/kg
(range)
Primary Reference | LD50
CALCULATION
METHOD ⁵
Primary Reference | ANIMAL
INFORMATION
(stock, weight, age) | GENDER | ROUTE/
METHOD OF
EXPOSURE ⁶ | DOSE | OBSERVATIONS | NOTES | CHEMICAL
SOURCE | PRIMARY REFERENCE | |--|--|--|--|---|--|--------|--|--|--|--|---|--| | Xylene | 4300 | 1537 | 1294 - 1781
(95% CL; slope =
9.6) | Finney (1971) Probit
Analysis | ChR-CD; ave bw
for each group =
253, 251, and 256 g;
young adults | male | oral;
intragastric
intubation | single dose in aqueous
solution (25%); doses =
1200, 1600, 2000 mg/kg;
dose = 1.2 - 2.0 mL | I 6 dead; observed over 14-day recovery
period; 1200 dose: lacrimation and wet
perioal; race (1/10 dead); 1600 dose:
tremors, salivation, prostration, piloerection,
lacrimation, wet perineal area, ataxia (7/10
dead; death within 15 hours after dosing);
2000 dose: tremors, severe fascicutations,
ataxia, lacrimation, prostration, piloerection,
lethargy, wet and stained perineal area,
sweakness (8/10 dead). | 3 groups of 10 rats each; date of test is 1979 | NA | from EPA TSCATS database; Oral LD50 test (1979), EPA Document No. 878221390 Fiche No. OTS0215213; E.I Dupont DeNemours & Co., Inc./Haskell Labs | | Xylene | 4300 | 4300 | NA | NA | white rats; Wistar;
175- 250 g | male | oral; stomach
tube | single dose in either olive oil
or corn oil solution
emulsified with aqueous
solution of acacia; or
undiluted; no more than 7 cc
administered | | percent of isomers: $o = 19$; $p = 24$; $m = 52$ | NA | RTECS REFERENCE CODEN: AMHIAB Bibliographic Data: AMA Archives of Industrial Health. (Chicago. IL) V.11-21, 1955-60. For publisher information, see AEHLAU. CODEN Reference: 14.387,1956.—Wolfe MA, Rowe VK, McCollister DD, Hollingsworth RL, Oyen F. 1956. Toxicological studies of certain alkylated benzenes and benzene:
experiments on laboratory animals. AMA Archives of Industrial Health. 14.387-397. The Dow Chemical Co. Midland MI. | | Xylene | 4300 | 8314 | 7716 - 8803
(95% CL) | Finney (1971) Probit
Analysis | ChR-CD; ave bw
each group = 276,
258, 286, 262, 256
g; young adults | male | | single dose in corn oil (50%
solution); doses = 7500,
8000, 9000, and 9500 mg/kg;
dose = 3.93-5.25 mL | 16 dead, observed over 14-day recovery
period; 7500 dose: (3/10 dead); 8000 dose:
(3/10 dead); 9000 dose: (6/10 dead); 9500
dose (10/10 dead); salivation, lethargy,
ruffled fur, diarrhea, respiratory congestion,
wet/bloody perineal areas | 4 groups of 10 rats each; date of test is 1975 | NA | from EPATSCATS database; Oral LD50 test (1975), EPA Document No. 878221390 Fiche No. OTS0215213; E.I Dupont DeNemours & Co., Inc./Haskell Labs | | Xylene | 4300 | 8620
(10 mL/kg; density
= 0.862) | 6465 - 11465
(CL; reported as
7.5 - 13.3 mL/kg) | Litchfield and
Wilcoxon method
(1949) | Long-Evans rats;
150-300 g | male | oral;
intragastric
intubation | single dose; graded doses up
to 25 mL/kg; undiluted
samples | observed for 14 days; mortality values based
on the number of animals which died during
this time; 6 rats per dose | ortho, meta, and para xylene; ethyl benzene | aromatic
concentrated
from
commercial
source by an
absorption
technique;
98%
aromatic | Hine CH, Zuidema HH. 1970. The toxicological properties of hydrocarbon solvents. Industrial Medicine. 39(5):39-44. | | Gray cells highlight the | | | rence value. | 1 | | | | | | | | | | ¹ NICEATM/ECVAM va
² RTECS® database valu | | | NICE ATM (2002) | | | | | | | | | | | ³ Value reported in the re | | | DV NICEAEM (2002) | | | | | | | | | | | ⁴ Range (if provided in the | | | | | | | | | | | | | | ⁵ Method renorted in the | reference i | nublication | | | | | | | | | | | | ⁶ Acute toxicity exposure | e test meth | od | | | | | | | | | | | | NA - information not rep
CL - Confidence Limit | orted/avai | lable | | | | | | | | | | | | CI - Confidence Interval | | | | | | | | | | | | | | SE - Standard Error | | | | | | | | | | | | | | UDP - Up-and-Down Pr | ocedure | | | | | | | | | | | | | TSCATS - Toxic Substan | | ol Act Test Submission | ns | | | | | | | | | | | RTECS - Registry of To: | xic Effects | of Chemical Substance | es | | | | | 17 Mar 2006 [This Page Intentionally Left Blank] ## Appendix H-2 ### **Evaluation of the Candidate Reference Data** 17 Mar 2006 [This Page Intentionally Left Blank] ### **APPENDIX H-2** # In Vivo Rodent Toxicity Reference Values Used to Assess the Accuracy of the 3T3 and NHK NRU Test Methods ### **Evaluation of the Candidate Reference Data** The 491 LD_{50} values identified by the literature search consisted of 485 rat oral LD_{50} values and six mouse oral LD_{50} values. Mouse oral LD_{50} values were used to determine reference values for colchicine, epinephrine bitartrate, and propylparaben since rat oral LD_{50} values for these three chemicals could not be located. Thirty rat oral LD_{50} values were believed to be duplicates of other reported values because the LD_{50} values and the experimental information matched exactly those cited by other publications from the same author(s) or because the same animal data were used to calculate multiple LD_{50} values (e.g., to evaluate various methods of calculation). Two rat oral LD₅₀ values provided by RTECS® were incorrect, possibly due to typographical errors. For the value of 200 mg/kg for acetylsalicylic acid, RTECS® cited a review by Diechmann (1969) that referred to a paper by Coldwell and Boyd (1966). Coldwell and Boyd (1966), however, actually reported an LD₅₀ of 920 mg/kg. For sodium oxalate, RTECS® cited a review paper by Walum (1998) for an LD₅₀ value of 11160 mg/kg. Although Walum (1998) provided no source, the LD₅₀ is the same as that used in the MEIC study (Ekwall et al. 1998b). That LD₅₀ was calculated from the LD₅₀ for oxalic acid (Ekwall et al. 1998b), which is 7500 mg/kg according to RTECS®. The source for this figure, however, provides a value of 7.5 mL/kg of 5% oxalic acid (Vernot et al. 1977). Extrapolating this to sodium oxalate (MW = 134.0 g/mole vs 90.04 g/mole for oxalic acid) yields an LD₅₀ of 558 mg/kg. After exclusion of the 30 duplicate values and the two erroneous values for acetylsalicylic acid and sodium oxalate, 459 records remained for further evaluation. **Figure H2-1** shows the frequency of the number of LD_{50} values retrieved for the 72 chemicals. The number of LD_{50} values identified for any one chemical ranged from one to 29. The highest frequency was two LD_{50} values per chemical (14 chemicals). The highest number of LD_{50} values retrieved for an individual chemical (acetonitrile) was 29. A large number of LD₅₀ values were also identified for hexachlorophene (21), ethylene glycol (19), and carbon tetrachloride (19). Only one LD₅₀ value was identified for seven chemicals: aminopterin, digoxin, epinephrine bitartrate, glutethimide, physostigmine, and propranolol HCl. Figure H2 - 1 Distribution of the Number of LD₅₀ Values Per Chemical ### Protocols Used for the Candidate Reference Data The LD₅₀ data were collected using various protocols; however, information on the protocol details was often incomplete due to limited documentation in the reports. The 459 remaining data records exhibited the following characteristics: - 64% (293/459) specified the stock or strain of rodent used. The remaining 36% (167/459) that did not specify the stock/strain described rats as rats, albino rats, white rats, rats of different strains, and mice were described as mice. - 63% (290/459) included age or weight information for the rodents. - 77% (354/459) specified the gender of the rodent. - 66% (305/459) stated the method used to calculate the LD₅₀. - 48% (221/459) reported the number of rodents used at each dose and 47% (216/459) reported the total number of rodents used. - 26% (118/459) specified the doses used. - 14% (66/459) quantitatively specified the purity of the chemical used. Of the remaining records, 18% (83/459) described the purity qualitatively using such terms as "technical grade," "pure," "reagent grade," and "pharmaceutical grade," 11% (51/459) named only the source of the chemical, and 56% (259/459) provided no information on the chemical. - 13% (61/459) reported the deaths at each dose. Although many LD₅₀ studies did not specify the strain or stock of rat used, the 293 studies that provided this information indicated that Sprague-Dawley/CD rats were the strain most frequently used (see **Figure H2-2**). Wistar rats were also frequently used. Strains such as Alderly Park, SD-JCL, THOM, Gunn, and HLA were the least frequently used. Of the six mouse LD₅₀ values, the strain was unspecified for two studies. The other four LD₅₀ values were obtained using CD-1, MS/Ae, dd, and B6D1F1(BDF1) mice. Of the 354 studies that reported rodent gender, the most frequently used gender for both rodents was male, which was used for 193 (55%) LD_{50} values. Female rodents were used for 104 (29%) LD_{50} values, both sexes were used for 55 (16%) LD_{50} values, and rodents of unspecified gender were used for 104 (29%) LD_{50} values. Figure H2 - 2 Distribution of Rat Stocks/Strains The age of the rodents used for the acute oral lethality studies also varied. Of the 174 LD₅₀ studies that reported age, the most frequently used age was 4-7 weeks, which was reported for 42 (24%) LD₅₀ values (see **Figure H2-3**). The majority of the reported ages were descriptive. Forty-five (26%) LD₅₀ values used rodents that were described as young, adults, young adults, or older adults. Thirty (17%) LD₅₀ studies used 8-12 week old rodents, which is the age recommended by current oral acute toxicity test guidelines (OECD 2001a, c, d; EPA 2002a). Twenty-three (13%) LD₅₀ values were determined using rodents less than four weeks of age, and 34 (20%) LD₅₀ values were determined using rodents greater than 12 weeks old. Figure H2 - 3 Distribution of Rat and Mouse Ages The duration of animal observation was not specified for 39% (179/459) of the LD₅₀ reports. Of the 280 (61%) studies that reported the duration of observation, 136 (48%) reported an observation period of 14 days, which is recommended in the current oral acute toxicity test guidelines (OECD 2001a, c, d; EPA 2002a). The second most commonly used observation period was seven days, which was reported by 59 (21%) studies. Clinical signs were reported in 30% (137/459) of the studies. Of the 305 studies that reported the method used to calculate the LD_{50} value, the most frequently used were the graphical log-probit methods such as Litchfield and Wilcoxon (1949), with 99 (33%) LD_{50} values, and Miller and Tainter (1944), with 24 (8%) LD_{50} values. The maximum likelihood probit method of Bliss (1938) and modifications were used for the calculation of 46 (15%) LD_{50} values. An additional 36 (12%) LD_{50} values were calculated using methods referred to in a general way as probit or log probit methods. The moving average method, such as that of Thompson (1947) or Weil (1952), was cited for 57 (19%) LD_{50} values. Thirteen (4%) LD_{50} values were described as being calculated by one method or another (e.g., by Weil or Litchfield and Wilcoxon), or by methods that were described generally, such as graphical or approximative. Some of the least frequently used methods were linear regression (six values), UDP (four values), and linear interpolation (one value). Estimates of variability such as confidence limits, standard error, or standard deviation were included in 62% (283/459) of the LD_{50} reports, but only 6% (28/459) included slopes. ### **Final Reference Values** Based on the study exclusion criteria described in **Section 4.1.2**, 73 (16%)
of the 459 records identified were excluded. Thirty-one LD₅₀values were excluded because they were reported as ranges, 21 were excluded because the rats were less than four weeks old, five were excluded because the rats were feral, five were excluded because the rats were anesthetized, and four were excluded because the chemical administered was mixed with food. Additionally, four LD₅₀ values for copper sulfate pentahydrate were excluded because very low purity (i.e., \leq 20%) chemical was used. Three LD₅₀ values were excluded because they were outliers at the 99% level (Dixon and Massey 1981) compared with the rest of the values for the particular chemical. These included one ethylene glycol value of 17,800 mg/kg (range of the other 16 values = 4000 - 9900 mg/kg), one meprobamate value of 794 mg/kg (range of other six values = 1286 - 1522 mg/kg), and one mercury chloride value of 160 mg/kg (range of other 10 values = 12 - 92 mg/kg). **Appendix H-1** provides the individual rationale for each LD₅₀ value excluded by shading the cell that contains the reason for exclusion. Triethylenemelamine, trichloroacetic acid, and xylene had the largest confidence limits in proportion to the geometric means. The confidence limits for triethylenemelamine and xylene were calculated from four LD_{50} values while those for trichloroacetic acid were calculated with five LD_{50} values. Nicotine and 2-propanol had the smallest confidence limits even though the number of values per chemical were similar to that for the chemicals with large confidence limits (nicotine N= 4, 2-propanol N = 6).